اکبری، م.، کرمانشاهی، ح. و کلیدری غ. (1383). بررسی اثر افزودن اسید استیک در آب آشامیدنی بر عملکرد، شاخصهای رشد و جمعیت میکروبی ایلئوم جوجههای گوشتی. علوم و فنون کشاورزی و منابع طبیعی. 3 (8) ص. 147-139.
پوستی، ا. و ادیب مرادی، م. (1385). روشهای آزمایشگاهی بافت شناسی. انتشارات دانشگاه تهران.
تهامی، ز.، حسینی، م. و باشتنی، م. (1393). اثر مکمل اسیدهای آلی بر برخی خصوصیات دستگاه گوارش و مورفولوژی روده باریک جوجههای گوشتی. تحقیقات تولیدات دامی. شماره 3، ص. 10-1.
حقیقی خوشخو، پ.، اکبری آزاد، گ.، معیر، ف. و پژوهنده، ا. ( 1389). تأثیر افزودنی خوراکی بوتیرات بر راندمان پرورشی و مورفولوژی روده باریک در جوجه گوشتی. مجله پژوهشهای بالینی دامپزشکی. شماره 4، ص. 242-235.
کریمی ترشیزی، م. (1385). جداسازی، شناسایی و انتخاب لاکتیک اسید مناسب برای تولید پروبیوتیکها در تغذیه جوجههای گوشتی. رساله دکترا. دانشگاه تربیت مدرس. تهران. ایران.
محمدباقری، ن. و نجفی، ر. (1394). بررسی تأثیر استفاده از سرکه و آنزیم فیتاز بر عملکرد و سیستم ایمنی جوجههای گوشتی. مجله علوم دامی (پژوهش و سازندگی). شماره 106، ص. 230-219.
منصوری، ب.، رستگار فاطمی، ب.، مدیرصانعی، م. و هنرزاد، ژ. (1391). تأثیر فیتاز بر خصوصیات استخوان درشتنی جوجههای بلدرچین تغذیه شده با جیرههای ذرت - کنجاله سویا. مجله داروهای گیاهی ایرانیان، شماره 3، ص. 154-149.
Abudabos, A. M., Al-Atiyat, R. M., Albatshan, H. A., Aljassim, R., Aljumaah, M. R., Alkhulaifi, M. M. and Stanley, D. M. (2017). Effects of concentration of corn distillers dried grains with solubles and enzyme supplementation on cecal microbiota and performance in broiler chickens. Applied Microbiology and Biotechnology. 101(18): 7017-7026.
Adil, S., Banday, T., Bhat, G. A., Mir, M. S. and Rehman, M. (2010). Effect of dietary supplementation of organic acids on performance, intestinal histomorphology, and serum biochemistry of broiler chicken. Veterinary Medicine International. 1-7.
Agboola, A. F., Omidiwura, B. R. O., Odu, O., Popoola, I. O. and Iyayi, E. A. (2015). Effects of organic acid and probiotic on performance and gut morphology in broiler chickens. South African Journal of Animal Science. 45(5), 494-501.
Aviagen. (2019). Ross 308 Broiler Nutrition Specifications. Aviagen Ltd., Newbridge, UK.
Baurhoo, B., Phillip, L. and Ruiz-Feria, C. A. (2007). Effects of purified lignin and mannan oligosaccharides on intestinal integrity and microbial populations in the ceca and litter of broiler chickens. Poultry Science. 86(6): 1070-1078.
Boling-Frankenbach, S.D., Snow, J.L., Parsons, C.M. and Baker, D.H. (2001). The effect of citric acid on the calcium and phosphorus requirements of chicks fed corn-soybean meal diets. Poultry Science. 80(6): 783-788.
Bradley, G. L., Savage, T. F. and Timm, K. I. (1994). The effects of supplementing diets with Saccharomyces cerevisiae var. boulardii on male poultry performance and ileal morphology. Poultry Science. 73(11): 1766-1770.
Brenes, A., Viveros, A., Arija, I., Centeno, C., Pizarro, M. and Bravo, C. (2003). The effect of citric acid and microbial phytase on mineral utilization in broiler chicks. Animal Feed Science and Technology. 110(1-4): 201-219.
Cowieson, A. J., Wilcock, P. and Bedford, M. R. (2011). Super-dosing effects of phytase in poultry and other monogastrics. World's Poultry Science Journal. 67(2): 225-236.
Delezie, E., Maertens, L. and Huyghebaert, G. (2012). Consequences of phosphorus interactions with calcium, phytase, and cholecalciferol on zootechnical performance and mineral retention in broiler chickens. Poultry Science. 91: 2523–2531.
Delvasto, P., Ballester, A., Muñoz, J. A., González, F., Blázquez, M. L. and García, C. (2005). Exploring the possibilities of biological beneficiation of iron-ores: The phosphorus problem. In Proceedings of the 15th Steelmaking Conference, 5th Ironmaking Conference and 1st Environment and Recycling Symposium IAS, pp. 7-10.
Dibner, J. J. and Buttin, P. (2002). Use of organic acids as a model to study the impact of gut microflora on nutrition and metabolism. Journal of Applied Poultry Research. 11(4): 453-463.
Garcia, V., Catala-Gregori, P., Hernandez, F., Megias, M. D. and Madrid, J. (2007). Effect of formic acid and plant extracts on growth, nutrient digestibility, intestine mucosa morphology, and meat yield of broilers. Journal of Applied Poultry Research. 16(4): 555-562.
Grasman, K.A. (2010). In vivo functional test for assessing immunotoxicity in birds (Ed.), Immunotoxicity testing: Methods and Protocols, Methods in Molecular Biology Humana Press, Product, 387-397
Hajati, H. (2018). Application of organic acids in poultry nutrition. International Journal of Avian Wildlife Biological. 3: 324-329.
Iji, P. A. and Tivey, D. R. (1998). Natural and synthetic oligosaccharides in broiler chicken diets. World's Poultry Science Journal, 54(2): 129-143.
Khosravinia, H., Nourmohammadi, R. and Afzali, N. (2015). Productive performance, gut morphometry, and nutrient digestibility of broiler chicken in response to low and high dietary levels of citric acid. Journal of Applied Poultry Research. 24(4): 470-480.
Mathlouthi, N., Lallès, J. P., Lepercq, P., Juste, C. and Larbier, M. (2002). Xylanase and β-glucanase supplementation improve conjugated bile acid fraction in intestinal contents and increase villus size of small intestine wall in broiler chickens fed a rye-based diet. Journal of Animal Science. 80(11): 2773-2779.
Moravej, H., Baghani, M., Allahyarishrasb, M. and Shivazad, M. (2012). Comparing the performance and bone features of broiler chickens fed different levels of vitamin during finisher period. Iranian Journal of Animal Science Research. 4(3): 199-208.
Panda, A. K., Rao, S. V., Raju, M. V. L. N. and Sunder, G. S. (2009). Effect of butyric acid on performance, gastrointestinal tract health and carcass characteristics in broiler chickens. Asian-Australasian Journal of Animal Sciences. 22(7): 1026-1031.
Pelicano, E. R. L., Souza, P. A., Souza, H. B. A., Figueiredo, D. F., Boiago, M. M., Carvalho, S. R. and Bordon, V. F. (2005). Intestinal mucosa development in broiler chickens fed natural growth promoters. Brazilian Journal of Poultry Science. 7: 221-229.
Pieniazek, J., Smith, K. A., Williams, M. P., Manangi, M. K., Vazquez-Anon, M., Solbak, A. and Lee, J. T. (2017). Evaluation of increasing levels of a microbial phytase in phosphorus deficient broiler diets via live broiler performance, tibia bone ash, apparent metabolizable energy, and amino acid digestibility. Poultry Science. 96(2): 370-382.
Pirgozliev, V., Bedford, M. R., Acamovic, T., Mares, P. and Allymehr, M. (2011). The effects of supplementary bacterial phytase on dietary energy and total tract amino acid digestibility when fed to young chickens. British Poultry Science. 52(2): 245-254.
Qadyanloo, B., Rahimi, Sh. and Karimi Torshizi, M. (2009). Effect of organic acids and formaldehyde on broiler intestine and salmonella reduction in feed. Journal of Veterinary Research. 64: 3:215-220.
Richmond, W. (1973). Enzymatic determination of total serum cholesterol. Clinical Chemistry, 20: 470-475.
Rodríguez-Lecompte, J. C., Yitbarek, A., Brady, J., Sharif, S., Cavanagh, M. D., Crow, G. and Camelo-Jaimes, G. (2012). The effect of microbial-nutrient interaction on the immune system of young chicks after early probiotic and organic acid administration. Journal of Animal Science. 90(7): 2246-2254.
Sen, S., Ingale, S. L., Kim, Y. W., Kim, J. S., Kim, K. H., Lohakare, J. D. and Chae, B. J. (2012). Effect of supplementation of Bacillus subtilis LS 1-2 to broiler diets on growth performance, nutrient retention, caecal microbiology and small intestinal morphology. Research in Veterinary Science. 93(1): 264-268.
Sommerfeld, V., Schollenberger, M., Kuhn, I. and Rodehutscord, M. (2018). Interactive effects of phosphorus, calcium, and phytase supplements on products of phytate degradation in the digestive tract of broiler chickens. Poultry Science. 97: 1177–1188.
Taheri, H. R. and Abbasi, M. M. (2020). Effect of high-dose phytase and low calcium concentration on performance of broiler chicken given diet severely limited in nonphytate phosphorus. Journal of Applied Poultry Research. 29(4): 817-829.
Taheri, H. R. and Mirisakhani, L. (2020). Effect of citric acid, vitamin D3, and high-dose phytase on performance of broiler chicken fed diet severely limited in non-phytate phosphorus. Livestock Science. 241: 104223.
Taheri, H.R., Jabbari, Z., Adibnia, S., Shahir, M.H. and Hosseini, S.A. (2015). Effect of highdose phytase and citric acid, alone or in combination, on growth performance of broilers given diets severely limited in available phosphorus. British Poultry Science. 56: 708–715.
Teirlynck, E., Bjerrum, L., Eeckhaut, V., Huygebaert, G., Pasmans, F., Haesebrouck, F. and Van Immerseel, F. (2009). The cereal type in feed influences gut wall morphology and intestinal immune cell infiltration in broiler chickens. British Journal of Nutrition. 102(10): 1453-1461.
Vieira, B. S., Silva, F. G., Oliveira, C. F. S., Correa, A. B., Junior, J. C. and Correa, G. S. S. (2017). Does citric acid improve performance and bone mineralization of broilers when combined with phytase? A systematic review and meta-analysis. Animal Feed Science and Technology. 232: 21-30.
Vieria, B. S., Caramori Junior, J. G., Oliveira, C. F. S. and Correa, G. S. S. (2018). Combination of phytase and organic acid for broilers: role in mineral digestibility and phytic acid degradation. World's Poultry Science Journal. 74: 711-726.
Walters, H. G., Coelho, M., Coufal, C. D. and Lee, J. T. (2019). Effects of increasing phytase inclusion levels on broiler performance, nutrient digestibility, and bone mineralization in low-phosphorus diets. Journal of Applied Poultry Research. 28(4): 1210-1225.
Wang, J. P., Lee, J. H., Yoo, J. S., Cho, J. H., Kim, H. J. and Kim, I. H. (2010). Effects of phenyllactic acid on growth performance, intestinal microbiota, relative organ weight, blood characteristics, and meat quality of broiler chicks. Poultry Science. 89(7): 1549-1555.
Wang, X. X., Hoffland, E., Feng, G. and Kuyper, T. W. (2017). Phosphate uptake from phytate due to hyphae-mediated phytase activity by arbuscular mycorrhizal maize. Frontiers in plant science, 8: 1-8.
Wang, Y., Ye, X., Ding, G. and Xu, F. 2013. Overexpression of phyA and appA genes improves soil organic phosphorus utilisation and seed phytase activity in Brassica napus. Plos One, 8(4): 1-9.
Woyengo, T. A., Slominski, B. A. and Jones, R. O. (2010). Growth performance and nutrient utilization of broiler chickens fed diets supplemented with phytase alone or in combination with citric acid and multicarbohydrase. Poultry science. 89(10): 2221-2229.
Xu, Y., Stark, C.R., Ferket. P.R., Williams, C.M. and Brake, J. (2015). Effects of feed form and dietary coarse ground corn on broiler live performance, body weight uniformity, relative gizzard weight, excreta nitrogen, and particle size preference behaviors. Poultry Science. 94(7): 1549-1556.
Yang, Y., Iji, P. A. and Choct, M. (2009). Dietary modulation of gut microflora in broiler chickens: a review of the role of six kinds of alternatives to in-feed antibiotics. World's Poultry Science Journal. 65(1): 97-114.
Yeung, S. L., Cheng, C., Lui, T. K., Tsang, J. S., Chan, W. T. and Lim, B. L. (2009). Purple acid phosphatase-like sequences in prokaryotic genomes and the characterization of an atypical purple alkaline phosphatase from Burkholderia cenocepacia J2315. Gene. 440(1-2): 1-8.
Ying, P., Wang, W., Duan, W., Blachier, F., Xu-gang, S., Wang, Y. and Pan, J. (2011). Effects of KDN phytase on the performance and Ca and P metabolism of broilers fed low phosphorus diets. Journal of Food Agriculture and Environment. 9: 348-352.