Document Type : Research Paper

Author

Faculty member of Isfahan Research center for agricultural Science and Natural Resources

Abstract

Sorghum grain is an important ingredient in poultry diets. Nitrogen-corrected true metabolizable energy (TMEn) content of sorghum grain is a measure of its quality. As for the other feed ingredients, the biological procedure used to determine the TMEn value of sorghum grain is costly and time-consuming. Therefore, it is necessary to find an alternative method to accurately estimate the TMEn content of sorghum grain. Artificial neural networks are the powerful method which widely used in agriculture and poultry nutrition. Therefore In this study, an artificial neural network (ANN) and a multiple linear regression (MLR) models were used to predict the TMEn of sorghum grain based on its acid detergent fiber (ADF) and total phenols content. The accuracy of the models was calculated by R2, MS error and bias. The predictive ability of an ANN was compared with a MLR model using the same training data sets. The results of this study showed that it is possible to estimate sorghum grain TMEn with a simple analytical determination of ADF and phenolic content. The R2 values corresponding to testing and training of the ANN model showed a higher accuracy of prediction than that established by regression method (R2=84% vs 56% for training and R2=83% vs 47% for testig data sets respectively). In conclusion, the ANN model may be used to accurately estimate the TMEn value of sorghum grain from its corresponding chemical composition (ADF and total phenols content).

Keywords

  • Ahmadi, H., A. Golian, M. Mottaghitalab, and N. Nariman-Zadeh. (2008). Prediction Model for True Metabolizable Energy of Feather Meal and Poultry Offal Meal Using Group  Method of Data Handling-Type Neural Network. Poultry Science. 87:1909–1912.

    Ahmadi, H., and A. Golian. (2010). Growth analysis of chickens fed diets varying in the  

    percentage of metabolizable energy provided by protein, fat, and carbohydrate through artificial neural network. Poultry Science. 89:173-179.

    AOAC. ( 2000). Official Methods of Analysis. Association of Official Analytical Chemists, Washington, DC,USA.

    Bolzan, A. C., R. A. F. Machado, and J. C. Z. Piaia.(2008). Egg hatchability prediction by

    multiple linear regression and artificial neural networks. Brazilian Journal of Poultry  

    Science. 10:97–102. 

    Boren, B., and R. D. Waniska. (1992). Sorghum seed color as an indicator of tannin content.  

        Journal of Applied Poultry Research. 1:117-121

    Breuer, L.H., and C. K. Dohm. (1972). Comparative nutritive value of several sorghum   

    varietiesand hybrids. Journal of Agriculture and Food Chemistry. 20:83-86

    Butler, L. G. (1990). The nature and amelioration of the antinutritional effects of tannins in

    sorghum grain. Pages 191–205 In: Proceedings of the International Conference on  

    Sorghum Nutritional Quality, Feb 26–March 1, 1990

    Chung, K. T., T. Y. Wong, C. I. Wei, Y. W. Huang, and Y. Lin. (1998). Tannins and human  

    health: A review. Critical Review of Food Science. 38:421–464.

    Douglas, J. H., T. W. Sullivan, P. L. Bond, and F. J. Struwe. (1990). Nutrient composition  

    and metabolizable energy values of selected grain sorghum varieties and yellow corn.  

    Poultry Science. 69:1147-1155.

    Dowling, L. F., C. Arndt, and B. R. Hamaker.  (2002). Economic Viability of High  

    Digestibility Sorghum as Feed for Market Broilers. Agronomic Journal. 94:1050–1058.

    Featherston, W. R., and J. C. Rogler. (1975). Influence of tannins on the utilization of

    sorghum grain by rats and chicks. Nutrition Reports International. 11:491-497.

    Flores, M. P., J. I. L. Castanon, and J. M. Mcnab. (1994). Effect of tannins on starch  

    digestibilityand TMEn of triticale and semi purified starches from triticale and field beans.

    British Poultry Science. 35: 281-286.

    Goering, H. K., and P. J. Van Soset. (1970). Forage fiber analyses (apparatus, Reagents T

    Procedures and some Applications). Agriculture Handbook. NO. 379. ARS-USDA,  

    Washington, DC.

    Griffiths, D. W. (1979). The inhibition of digestive enzymes by extracts of field beans  

     (Viciafaba). Journal of Science and Food Agriculture. 30: 458-462.

    Griffiths, D. W., and G. Moseley. (1980). The effect of diets containing field beans of high   

    • or low polyphenolic content on the activity of digestive enzymes in the intestines of rats.  

    Journal of Agricultural and Food Chemistry. 31: 255-259

    Hagerman, A. E., K. M. Reidl, G. A. Jones, K. N. Sovik, N. T. Ritchard, P. W. Hartzfield,

    and T. L. Tiechel. (1998). High molecular weight plant polyphenolics (tannins) as  

    biological antioxidants. Journal of Agricultural and Food Chemistry. 46:1887–1892.

    Halley, J. T., T. S. Nelson, L. K. Kirby, and J. O. York. (1986). Effect of tannin content of

    Sorghum grain in poultry rations on dry matter digestion and energy utilization. Arkansas

    Farm Research Agricultural Experiment Station, University of Arkansas, Fayetteville,  

    Arkansas 35 (2): 8

    Haslam, E. (1981). Vegetable tannins. In: The Biochemistry of Plants, Vol. 7 (Ed Conn,  

    E.E.), Academic Press, New York, pp. 527-544

    Hulan, H. W., and F. G. Proud foot. (1982). Nutritive value of sorghum grain for broiler  

    chickens. Canadian Journal of Animal Science. 62:869–875.

    Jimenez-Ramsey, L. M., J. C. Rogler, T. L. Housley, L. G. Butler, and R. G. Elkin. (1994).

    Absorption and distribution of 14C-labeled condensed tannin and related sorghum

    phenolics in chickens. Journal of Agricultural and Food Chemistry. 42: 963-967.

    Mahmood, S., and R. Smithard. (1993). A comparison of effects of body weight and feed  

    intake on digestion in broiler cockerels with effects of tannins. British Journal of  

    Nutrition. 70:701-709.

    Moir, K. W., and J. K. Connor. (1977). A comparison of three fiber methods for predicting

    the metabolizable energy content of sorghum grain for poultry. Animal Feed Science and  

    Technology. 2:197-203.

    National Research Council, (1994). Nutrient Requirements for Poultry. 9th rev. ed. National  

    Academy Press, Washington, DC.

    Nyachoti, C. M., J. L. Atkinson, and S. Leeson. (1997). Sorghum tannins: a review. World  

    Poultry Science Journal. 53:5-21.

    Perai A. H., H. Nassiri Moghaddam , S. Asadpour, J. Bahrampour, and Gh. Mansoori.  

     (2010). A comparison of artificial neural networks with other statistical approaches for

    the prediction of true metabolizable energy of meat and bone meal. Poultry Science.  

    89:1562–1568.

    Roush, W. B., and T. Cravener. (1997). Artificial neural network prediction of amino acid

    levels in feed ingredients. Poultry Science. 76:721–727

    Roush, W. B., W. A. Dozier III, and S. L. Branton. (2006). Comparision of Gompertz and  

    neural networks models of broiler growth. Poultry Science. 85:794–797.

    Roush, W.B., Y.K. Kirby, T.L. Cravener, and R.F Wideman. (1996). Artificial neural

    networks prediction of ascites in broilers. Poultry Science. 75:1479-1487.

    Salle, C. T., A. S. Guahyba, V. B. Wald, A. B. Silva, F. O. Salle, and V. P. Nascimento.

     (2003). Use of artificial neural networks to estimate production variables of broilers

    breeders in the production phase. British Poultry Science. 44:211-217.

    Sibbald, I. R. (1976). A bioassay for true metabolizable energy of feedstuffs. Poultry  

    Science. 55:303–308.

    Sibbald, I. R. (1977). The true metabolizable energy values of some feeding-stuffs. Poultry 

    Science. 56: 380-385.

    STATSOFT. (2009). Statistica. (Data Analysis Software System). Version 8.0.Tulsa,OK:      

    Statistica  Software Incorporation.