Document Type : Research Paper

Authors

1 RaminAgriculture And Natural Resources University Of Khouzestan Mollasani, Ahwaz, Iran

2 Associate professor (B.Sc., M.Sc., Ph.D), Department of Animal Science RaminAgriculture And Natural Resources University Of Khouzestan Mollasani, Ahwaz, Iran

3 Assistant professor, Department of Animal and Poultry Science College of Aburaihan, University of Tehran 465 Pakdasht, Iran

4 . Professor, School of Environmental and Rural Science, University of New England, Armidale, Australia

5 Professor Department of Animal Science RaminAgriculture And Natural Resources University Of Khouzestan Mollasani, Ahwaz, Iran

Abstract

Accurate estimation of variance components using pedigree and genomic data plays a key role in prediction of breeding values. Since SNP markers in genomic selection are distributed across the genome, they may cover all quantitative traits loci and potentially explain all of genetic variation. In this study, genotype data from Merino sheep, genotyped by 50k Illumina SNP chip were used. Staple length and Fibre diameter traits were studied in this research. To study the association between allele frequency spectrum and captured additive genetic variance, all SNPs were partitioned in five MAF bins with the equal numbers of SNPs. Two statistical models including separate analysis for each category of MAF SNPs or joint analysis of all MAF groups were fitted. The analysis were performed using REML (parametric) and a Bayesian method implemented via Gibbs sampling and RKHS (semi-parametric) model. Using all common SNPs in REML approach, estimates of genomic heritability were 0.72 and 0.48 for Staple length and Fibre diameter, respectively. In Bayesian approach, genomic heritability for mentioned traits were 0.74 and 0.47 respectively. In the separate analysis, estimates of genomic heritability using REML and Bayesian approaches for each MAF class were similar, but in joint analysis estimates of two approaches were different. Overall, when the model is simple both approaches perform similarly while when model is complicated as joint analysis in present study, two approaches work different. Therefore, to determine which approach is more reliable, further research is required

Keywords

تیموریان، م.، اسلمی‌نژاد، ع.ا. و شریعتی، م.م. (1394). بررسی اثر برخی عوامل جمعیتی بر کیفیت انتخاب ژنومیک در گاوهای هلشتاین ایران. نشریه پژوهشهای علوم دامی ایران. جلد 7، شماره 1، ص ص. 103-96.
دیمی غیاث‌آبادی، پ.، علیجانی، ص.، شجاع غیاث، ج. و پیرانی، ن. (1391). مقایسه دو روش آماری حداکثر درست‌نمایی محدود شده و آنالیز بیزی در برآورد پارامترهای ژنتیکی برخی صفات مهم اقتصادی مرغهای بومی استان فارس. پژوهشهای تولیدات دامی. سال سوم. شماره 5. ص ص. 13-1.
راشدی ده‌صحرائی، آ.، فیاضی، ج.، وطن‌خواه، م. و بیگی نصیری، م.ت. (1392). برآورد اجزای (کو)واریانس و فراسنجه های ژنتیکی صفات رشد در برههای لری بختیاری با استفاده از روش نمونه گیری گیبس. نشریه پژوهش در نشخوارکنندگان. جلد 1. شماره 2. ص ص. 128-109.
قائمی، م.، افشار، م.، عسگری جعفرآبادی، ق. و حاجی بنده، ن. (1391). اثر ضریب وراثت پذیری بر صحت ارزیابی ژنومی و تغییرات ضریب همخونی. مجله دانش و پژوهش علوم دامی / جلد 10، ص ص. 102-95.
Abdollahi-Arpanahi, R., Pakdel, A., Nejati-Javaremi, A., Moradi Shahrbabak, M., Morota, G., Valente, B.D. et al. (2014). Dissection of additive genetic variability for quantitative traits in chickens using SNP markers. Animal Breeding and Genetics. 131: 183–193.
Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on pattern Analysis and machine Intelligence. 6: 721-741.
Gianola, D. and de los Campos, G. (2013). Genome-enable prediction of complex traits. University of Wisconsin-Medison, May 27th-31st, 2013.
Hayes, B.J. (2007). QTL,Mapping Mas, and Genomic selection Animal breeding and Genetics Department of Animal Science Iowa State university.
Hayes, B.J., P. M. Visscher, and M.E. Goddard. (2009). Increased accuracy of artificial selection by using the realized relationship matrix. Genetic Research. 91:47–60.
Jensen, J., Su, G. and Madsen, P. (2012). Partitioning additive genetic variance into genomic and remaining polygenic components for complex traits in dairy cattle. BMC Genetics. 13, 44.
Lee, S.H., DeCandia, T.R., Ripke, S., Yang, J., Sullivan, P.F., Goddard, M.E. and et al. (2012). Estimating the proportion of variation in susceptibility to schizophrenia captured by common SNPs. Nature Genetics. 44: 247–250.
Lee, S.H., Harold, D., Nyholt, D.R., Goddard, M.E., Zondervan, K.T., Williams, J. et al. (2013). Estimation and partitioning of polygenic variation captured by common SNPs for Alzheimer’s disease, multiple sclerosis and endometriosis. Human Molecular Genetics. 22: 832–841.
Matebesi, P.A., Cloete, S.W.P. and Van Wyk, J.B. (2009). Genetic parameter estimation of 16-month live weight and objectively measured wool traits in the Tygerhoek Merino flock. South African Journal of Animal Science. 2009, 39 (1): 73-82.
Meuwissen, T. H. E., B. J. Hayes, and M. E. Goddard. (2001). Prediction of total genetic value using genome-wide dense marker maps. Genetics. 157:1819–1829.
Ogawa, Sh., Matsuda1, H., Taniguchi, Y., Watanabe, T., Sugimoto, Y. and Iwaisaki, H. (2016). Estimated Genetic Variance Explained by Single Nucleotide Polymorphisms of Different Minor Allele Frequencies for Carcass Traits in Japanese Black Cattle. Journal of Biosciences and Medicines. 4: 89-97.
Park, J.H., Gail, M.H., Weinberg, C.R., Carroll, R.J., Chung, C.C., Wang, Z. et al. (2011). Distribution of allele frequencies and effect sizes and their interrelationships for common genetic susceptibility variants. Proceedings of the National Academy of Sciences of the USA. 108(44): 18026–18031.
Pérez, P. and de los Campos, G. (2013). BGLR: a statistical package for whole genome regression and prediction. R package version, 1(0.2)
Pimentel, E.C.G., Erbe, M., Konig S. and Simianer. H. (2011). Genome partitioning of genetic variation for milk production and composition traits in Holstein cattle. Frontiers in Genetics. 2,19.
Purcell, S., Neale, B., Todd-Brown, K., Thomas. L., Ferreira, M.A.R., Bender, D. et al. (2007). PLINK: a tool set for whole-genome association and population-based linkage analyses. American Journal of Human Genetic. 81: 559–575.
Safari, E., Fogarti, N.M., Gilmour, A.R., Atkins, K.D., Mortimer, S.I., Swan, A.A. and et al. (2007). Across population genetic parameters for wool, growth, and reproduction traits in Australian Merino sheep. 2. Estimates of heritability and variance components. Australian Journal of Agricultural Research. 58(2): 177-184.
Schrooten C., Bovenhuis, H.,Van Arendok, J.A., and Bijma, P. (2005). Genetic Progress in multistage dairy cattle breeding schemes using genetic markers. Journal of Dairy Science. Sci.88:1569-1581.
Uemoto, Y., Sasaki, Sh., Kojima, T., Sugimoto, Y. and Watanabe, T. (2015). Impact of QTL minor allele frequency on genomic evaluation using real genotype data and simulated phenotypes in Japanese Black cattle. BMC Genetics. (2015) 16:134.
Van Raden, P.M. (2008). Efficient methods to compute genomic predictions. Journal of Dairy Science. 91:4414–23.
Wray, N.R. (2005). Allele frequencies and the r2 measure of linkage disequilibrium: impact on design and interpretation of association studies. Twin Reserch and Human Genetics. 8: 87–94.
Yang, J., Benyamin, B., McEvoy, B.P., Gordon, S., Henders, A.K., Nyholt, D.R. et al. (2010). Common SNPs explain a large proportion of the heritability for human height. Nature Genetics. 42: 565–569.