Estimation of variance components and genetic parameters of body weight traits in crossbreds of Japanese quail with considering non-additive genetic effects

Document Type : Research Paper

Authors

1 MSc of animal breeding, Department of Animal Science, Agriculture Faculty, University of Zabol, Zabol, Iran

2 Assistant Professor of University of Zabol

3 Academic staff at Research Center of Specific Livestock, University of Zabol, Zabol

4 Department of Animal Science, university of zabol

5 department of animal science, university of zabol

Abstract

Growth traits in broiler chicken are important economic traits in breeding programs. A major part of the growth performance in birds is the result of the gens combination, which use of these combined effects requires the optimal design for mating system to use the general and specific genes' combining ability. The aim of this study was to estimate variance components and genetic parameters for body weight traits in a crossbred population of four Japanese quail strains from of partial diallel cross design using an animal model includes direct additive and non-additive genetic effects. The estimation of variance components for body weight traits, including hatch weight and weights at 5, 10, 15, 20, 25, 30, 35, 40 and 45 days-old were performed using a single-trait animal model via Gibbs sampling. Gibbs chains with 1,500,000 iterations were generated, with an initial discard of 150,000 samples and a sampling interval of 100 iterations. The estimated heritability of the above mentioned traits were 0.655, 0.276, 0.201, 0.022, 0.053, 0.04, 0.129, 0.087, 0.417 and 0.046, respectively. The contribution of direct additive genetic variance was lower in early weighting traits and the additive variance contribution was incremented with an increase in the bird's age. Adding non-additive genetic effects, including dominance and epistasis in the model, reduced the error variance and increased the accuracy of additive genetic variance estimates.

Keywords


جسوری، م.، علیجانی، ص.، پیرانی، ن.، شجاع، ج.، پورطهماسبیان، م.، دقیق کیا، ح.، یوسفی زنور، ا.، جعفرزاده قدیمی، ر. و کریمی، س. م. (۱۳۹۱). برآورد پارامترهای ژنتیکی برخی صفات مهم اقتصادی در مرغان بومی مازندران با استفاده از روش آماری بیزی. علوم دامی ایران، ۲۲(۴): ۱۷۲-۱۶۳.
Aggrey, S. E. and Cheng, K. M. (1994). Animal model analysis of genetic (co)variances for growth traits in Japanese quail. Poultry Science. 73: 1822-1828.
Bonafé, C. M., Torres, R. A., Sarmento, J. L. R., Silva, L. P., Ribeiro, J. C., Teixeira, R. B., Silva, F. G. and Sousa, M. F. (2011). Random regression models for description of growth curve of meat quails. Revista Brasileira de Zootecnia. 40: 765- 771.
Clement, V., Bibe, B., Verrier, E., Elsen, J. M., Manfredi, E., Bouix, J. and Hanocq, E. (2001). Simulation analysis to test the influence of model adequacy and data structure on the estimation of genetic parameters for traits with direct and maternal effects. Genetic Selection Evolution. 33: 369-395.
Devi, K. S., Gupta, B. R., Prakash, M. G., Qudratullah, S. and Reddy, A. R. (2010). Genetic studies on growth and production traits in two strains of japanese quails. Tamilnadu Journal of Veterinary & Animal Sciences. 6(5): 223-230.
Hassen, Y., Fuerst-Waltl, B. and Sölkner, J. (2003). Genetic parameter estimates for birth weight, weaning weight and average daily gain in pure and crossbred sheep in Ethiopia. Journal of Animal Breeding Genetic. 120: 29-38.
Hussain, J., Akram, M., Sahota, A. W., Javed, K., Ahmad, H. A., Mehmood, S., Jatoi, A. S. and Ahmad, S. (2014). Selection for higher three-week body weight in Japanese Quail: 2. Estimation of Genetic Parameters. Journal of Animal and Plant Sciences. 24: 869-873.
Jones, J. and Hughes, B. (1978). Comparison of growth rate, bodyweight, and feed conversion between Coturnix D1 Quail and Bobwhite Quail. Poultry Science. 57: 1471-1472.
Krishna, D. and Sahitya Rani, M. (2017). Selective Breeding of Japanese Quails for Improvement of Performance. International Journal of Current Microbiology and Applied Sciences. 6(4): 2500-2506.‏
Li, Y., Van Der Werf, J. H. and Kinghorn, B. P. (2006). Optimization of a crossing system using mate selection. Genetics Selection Evolution. 38: 147-165.
Lotfi, E., Zerehdaran, S. and Ahani Azari, M. (2012). Direct and maternal genetic effects of body weight traits in Japanese quail (Coturnix coturnix japonica). Arch. Geflügelk. 76(3): 150-154.
Magda, I. Samaha, A., Sharaf, M. M. and Hemeda, S. A. (2010). Phenotypic and genetic estimates of some productive and reproductive traits in Japanese quails. Egyptian Poultry Science. 30(3): 875-892.
Manaa, E. A., El-Bayomi, K. M. and Sosa, G. A. (2015). Genetic evaluation for growth traits in Japanese quail. Benha Veterinary Medical Journal. 28: 8-16.
Meyer, K. (1989). Restricted maximum likelihood to estimate variance components for animal models with several random effects using a derivative-free algorithm. Genetique, Selection et Evolution. 21: 317-340.
Mielenz, N., Ronny, R. and Schuler, L. (2006). Estimation of additive and non-additive genetic variances of body weight, egg weight and egg production for quails (Coturnix Coturnix Japonica) with an animal model analysis. Archives Animal Breeding. 49(3): 300-307.
Minvielle, F. (1998). Genetics and breeding of Japanese quail for production around the world. In: Proceedings of the 6º Asian Pacific Poultry Congress, Nagoya, Japan. p. 122-127.
Minvielle, F. (2004). The future of Japanese Quail for research and production. World’s Poultry Science Journal. 60: 8-13.
Misztal, I., Tsuruta, S., Strabel, T., Auvray, B., Druet, T. and Lee, D. H. (2002). BLUPF90 and related programs. In: 7th World Congress on Genetics Applied to Livestock Production, Montpellier, France.
Momoh, O., Gambo, D. and Dim, N. (2014). Genetic parameters of growth, body and egg traits in Japanese quails (Cotournix cotournix japonica) reared in southern guinea savannah of Nigeria. Journal of Applied Biosciences. 79: 6947-6954
Moritsu, Y., Nestor, K. E., Noble, D. O., Anthony, N. B. and Bacon, W. L. (1997). Divergent selection for body weight and yolk precursor in Coturnix coturnix japonica. 12. Heterosis in reciprocal crosses between divergently selected lines. Poultry Science. 76: 437-444.
Narinç, D., Aksoy, T. and Kaplan, S. (2016). Effects of multi-trait selection on phenotypic and genetic changes in Japanese Quail (Coturnix Coturnix Japonica). The Journal of Poultry Science. 53: 103-110.
Narinc, D., Karaman, E., Aksoy, T. and Firat, M. Z. (2014). Genetic parameter estimates of growth curve and reproduction traits in Japanese quail. Poultry Science. 93: 24-30.
Piao, J., Okamoto, S., Kobayashi, S., Wada, Y. and Maeda, Y. (2004). Purebred and crossbred performances from a Japanese quail line with very small body size. Animal Research. 53: 145–153.
Resende, R. O., Martins, E. N., Georg, P. C., Paiva, E., Conti, A. C. M., Santos, A. I., Sakaguti, E. S. and Murakami, A. E. (2005). Variance components for body weight in Japanese quails (Coturnix Japonica). Revista Brasileira de Ciência Avícola. 7: 23-25.
Rezvannejad, E., Pakdel, A., Ashtianee, S. M., Yeganeh, H. M. and Yaghoobi, M. (2013). Analysis of growth characteristics in short-term divergently selected Japanese quail lines and their cross. Journal of Applied Poultry Research. 22: 663-670.
Rohe, R., Krieter, J. and Preisinger, R. (2000). Bedeutung der Varianzkomponentenschätzung für die Zucht von landwirtschaftlichen Zuchttieren –Eine Übersicht. Arch. Tierz. Dummerstorf. 43: 523-534.
Saatci, M., Ap Dewi, I. and Aksoy, A. (2003). Application of REML procedure to estimate the genetic parameters of weekly liveweights in one‐to‐one sire and dam pedigree recorded Japanese quail. Journal of Animal Breeding and Genetics. 120: 23-28.
Sezer, M. (2007). Genetic parameters estimated for sexual maturity and weekly live weights of Japanese quail (Coturnix coturnix japonica). Asian-Australian Journal of Animal Science. 20(1): 19-24.
Shokoohmand, M., Kashan, N. E. J. and Maybody, M. A. E. (2007). Estimation of heritability and genetic correlations of body weight in different age for three strains of Japanese quail. International Journal of Agriculture and Biology. 9(6): 945-947.
Siegel, P. B., Dodgson, J. B., Andersson, L. (2006). Progress from chicken genetics to the chicken genome. Poultry Science. 85 (12): 2050–2060.
Silva, P. L, Jeferson C. Ribeiro, J. C., Crispim, A. C., Silva, F. G., Bonafe´, C. M., Silva, F. F. and Torres, R. A. (2013). Genetic parameters of body weight and egg traits in meat-type quail. Livestock Science. 153: 27-32.
Sorensen, D. A., Gianola, D. (2002). Likelihood, bayesian and MCMC methods in quantitative genetics: Statistics for biology and health. Springer-Verlag, New York.
Tigli, R., Balcioglu, M. S. and Yaylak, E. (1997). Genetic and phenotypic parameters belong to different production traits of Japanese quail. IV. Estimation of heritability belong to body weight from Ebeveyn-offspring resemblance. Trakya Region II. In: Proceedings of the Animal Symposium. 9–10 January, Tekirda˘g, Turkey, pp. 274–279.
Vali, N., Edriss, M. and Rahmani, H. (2005). Genetic parameters of body and some carcass traits in two quail strains. International Journal of Poultry Science. 4: 296-300.
Wolak, M. E. (2012). nadiv: an R package to create relatedness matrices for estimating non‐additive genetic variances in animal models. Methods in Ecology and Evolution. 3: 792-796.