Document Type : Research Paper

Authors

1 Agriculture Group,Minab Higher Education Center,University of Hormozgan, Minab, Iran

2 Department of Animal Science,Faculty of Agriculture, University of Guilan, Rasht, Iran

Abstract

The genetic difference in micro-environmental sensitivities are measurable through the heterogeneity of the residual variance between animals and it can be seemed that these differences could be inherited. The objective of current study was to estimate the genetic variance components and heritability of micro-environmental sensitivities for milk yield and somatic cell score (SCS) traits in the first lactation of Iranian Holstein cows. Data included the 1,466,498 and 875,416 test day records for milk yield and somatic cell score, respectively, that were collected by the Animal Breeding Center and Promotion of Animal Products of Iran from 1987 to 2015. The GLM procedure of SAS software was used to determine the fixed effects which were fitted in the statistical model of analysis. Estimation of variance components and genetic parameters of micro-environmental sensitivity was performed using ASReml software, applying the double hierarchical generalized linear model (DHGLM). Heritability of micro-environmental sensitivity for milk yield (0.00201±0.00014) and somatic cell score (0.00188±0.00018) was lower compared with the heritability of milk yield (0.16±0.08) and somatic cell score (0.034±0.007). However, the genetic coefficient variation (GCV) for residual variance of the mentioned traits was estimated to be 0.18 and 0.16, respectively, which indicating a substantial potential for selection responses in both traits. The results of this study indicate that heterogeneity of residual variation in milk yield and somatic cell score of Iranian Holstein cows was partly under genetic control and therefore uniformity of these traits could be improved by selection for residual variance.

Keywords

فرهنگ­فر، ه.، سالاری، م و اصغری، م. (1395). برآورد پارامترهای ژنتیکی رکوردهای روز آزمون شیر گاوهای هلشتاین استان تهران با استفاده از مدل تابع کواریانس. نشریه پژوهش­های علوم دامی، جلد 26، شماره 4، ص. 11-1.
Dekkers, J. C. M., Birke, P. V. and Gibson, J. P. (1995). Optimum linear selection indexes for multiple generation objectives with non-linear profit functions. Journal of Animal Science, 61: 165-175.
Ehsaninia, J., Ghavi Hossein-Zadeh, N. and Shadparvar, A. A. (2016). Homogeneity and heterogeneity of variance components for milk and protein yield at different cluster sizes in Iranian Holsteins. Livestock Science, 188: 174-181.
Felleki, M., Lee, D., Lee, Y., Gilmour, A. R. and Ronnegard, L. (2012), Estimation of breeding values for mean and dispersion, their variance and correlation using double hierarchical generalized linear models. Genetic Research, 94: 307-317.
Garreau, H., Bolet, G., Larzul, C., Robert-Granie, C., Saleil, G., SanCristobal, M. and Bodin, L. (2008). Results of four generations of a canalizing selection for rabbit birth weight. Livestock Science. 119: 55-62.
Gilmour, A. R., Gogel, B. J., Cullis, B. R. and Thompson, R. (2009). ASReml User Guide Release. VSN International Ltd: Hemel Hempstead.
Hill, W. G. and Mulder, H. A. (2010). Genetic analysis of environmental variation. Genetic Research, 92: 381-395.
Janhunen, M., A. Kause, A., Vehvilainen, H. and Jarvisalo, O. (2012). Genetics of Microenvironmental Sensitivity of Body Weight in Rainbow Trout (Oncorhynchus mykiss) Selected for Improved Growth. Plos One. 7: 6, 1-8.
Kheirabadi, K., Alijani, S., Zavadilová, L., Rafat, A. S. and Moghaddam, G. (2013). Estimation of genetic parameters for daily milk yields of primiparous Iranian Holstein cows. Archiv Tierzucht, 5644: 455-466.
Mulder, H. A., Bijma, P. and Hill, W. G. (2007). Prediction of breeding values and selection response with genetic heterogeneity of environmental variance. Genetics, 175:1895-1910.
Mulder, H. A., Bijma, P. and Hill, W. G. (2008). Selection for uniformity in livestock by exploiting genetic heterogeneity of residual variance. Genetic Selection Evolution, 40: 37-59.
Mulder, H. A., Hill, W. G., Vereijken, A. and Veerkamp, R. F. (2009). Estimation of genetic variation in residual variance in female and male broilers. Animal, 3: 1673-1680.
Mulder, H. A., Rönnegård, L., Fikse, F., Veerkamp, R. F. and Strandberg, E. (2013). Estimation of genetic variance in macro- and micro-environmental sensitivity using double hierarchical generalized linear models. Genetic Selection Evolution, 45: 1-14
Neves, H. H. R., Carvalheiro, R. and Queiroz, S. A. (2012). Genetic and environmental heterogeneity of residual variance of weight traits in Nellore beef cattle. Genetic election Evolution, 44: 1-12.
Neves, H. H. R., Carvalheiro, R., Roso, V. M. and Queiroz, S. A. (2011). Genetic variability of residual variance of production traits in Nellore beef cattle. Livestock Production Science. 142: 164-169.
R Core Team. (2010). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
Rönnegård, L., Felleki, M., Fikse, W. F., Mulder, H. A. and Strandberg, E. (2010). Genetic heterogeneity of residual variance-Estimation of variance components using double hierarchical generalized linear models. Genetic Selection Evolution, 42: 1-10.
Rönnegård, L., Felleki, M., Fikse, W. F., Mulder, H. A. and Strandberg, E. (2013). Variance component and breeding value estimation for genetic heterogeneity of residual variance in Swedish Holstein dairy cattle. Journal of Dairy Science, 96: 2627-2636.
Ros, M., Sorensen, D., Waagepetersen, R., Dupont-Nivet, M., SanCristobal, M., Bonnett, J. C. and Mallard, J. (2004). Evidence for genetic control of adult weight plasticity in the snail Helix aspersa. Genetics, 168: 2089-2097.
Rowe, S. J., White, I. M. S., Avendano, S. and Hill, W. G. (2006). Genetic heterogeneity of residual variance in broiler chickens. Genetic Selection Evolution, 38: 617-635.
SanCristobal-Gaudy, M., Bodin, L., Elsen, J. M. and Chevalet, C. (2001). Genetic components of litter size variability in sheep. Genetic Selection Evolution, 33: 249-271.
 
Shadparvar, A. A. and Yazdanshenas, M. S. (2005). Genetic parameters of milk yield and milk fat percentage test day records of Iranian Holstein cows. Asian-Australasian Journal of Animal Science. 18, 9: 1231-1236.
Sonesson, A. K., Ødegård, J. and Rönnegård, L.  (2013). Genetic heterogeneity of within-family variance of body weight in Atlantic salmon (Salmo salar). Genetic Selection Evolution, 45: 1-8.
Vandenplas, J., Bastin, C., Gengler, N. and Mulder, H. A. (2013). Genetic variance in micro-environmental sensitivity for milk and milk quality in Walloon Holstein cattle. Journal of Dairy Science, 96: 5977-5990.
Wolc, A., White, I. M. S. Avendano, S. and Hill, W. G. (2009). Genetic variability in residual variation of body weight and conformation scores in broiler chickens. Poultry Science, 88:1156-1161.
Yang, Y., Christensen, O. F. and Sorensen, D. (2010). Analysis of a genetically structured variance heterogeneity model using the Box-Cox transformation. Genetic Research, 93: 33-46.