Phylogenetic analysis of ND6 gene of mitochondria genome in native chickens of Sistan and Baluchestan

Document Type : Research Paper

Authors

1 Master graduate of Animal breeding, Special livestock Institute, Research center of the University of Zabol

2 Assistance Professor, Department of Exercise Physiology, Faculty of Sport Science, University of Mazandaran, Babolsar,Iran

3 Department of animal science, faculaty of Agriculture, Jiroft university, Jiroft,Iran

Abstract

Today, genes in the mitochondrial genome are widely used as a strong genetic marker.The purpose of this study was to determine sequence of ND6 gene of the mitochondrial genome of Khazak chicken and investigate the phylogenetic relationship of this region of the genome with other chicken breeds and some fowls of around the world. 20 blood samples of wing vein were collected from Khazak chicken of Research Center of specific livestock of Sistan and Baluchestan province. DNA was extracted from whole blood. Then, the ND6 gene along with a portion of upstream and downstream tRNA (854 bp) was amplified from mitochondrial genome by specific primers in Polymerase Chain Reaction. Samples were sequenced after purification and genetic diversity was investigated within the population. After Download similar sequences of the other mitochondrial genome from the chicken breeds and some fowls of the NCBI, phylogenetic analysis was carried out. The results showed that there was no nucleotide difference between ND6 sequences of native Khazak chicken. The results of the phylogenetic tree from native Khazak chicken with other breeds showed that the highest genetic similarity was observed from this region of the mitochondrial genome of native Khazak chicken with HuangLang, Zhuxiang, Fiji, Philippines, Hengshan Yellow, Jinhu Wufeng and Red jungle fowl breeds which indicates that there are a high genetic relationship between the native Khazak chicken with the Japanese and Chinese (southeastern Asia) chicken breeds. The least genetic similarity of ND6 sequence from native Khazak chicken was observed with the Grus japonesis.

Keywords


ابراهیم­زاده اله آباد ا، شهابی ا، پزشکیان ز. (1395). تجزیه و تحلیل ژنتیکی ناحیه سیتوکروم b در مرغ خزک سیستان. مجله مهندسی ژنتیک و ایمنی زیستی. شماره 5، ص ص. 186-179.
اصغری مقدم م ) 1393 ( بررسی خصوصیات چند نژاد دامی سیستان نسبت به سایر نژادهای دامی ایران. اولین کنفرانس بین المللی یافته­های نوین در علوم کشاورزی، منابع طبیعی و محیط زیست، ایران، تهران.
نجم الدینی ر، داشاب غ، وفای واله م، مرادی کر. (1397). مطالعه روابط تکاملی و فیلوژنتیکی ژن گلوتاتیون پراکسیداز- ۱ در جمعیت­های مرغ خزک و راس 308، مجله تولیدات دامی. شماره 20، ص ص. 241-225.
Bai, Y. and Attardi, G. (1998). The mtDNA-encoded ND6 subunit of mitochondrial NADH dehydrogenase is essential for the assembly of the membrane arm and the respiratory function of the enzyme. The EMBO Journal.17:4848–4858.
Bao, H., Zhao, C., Li, J., Wu, C. (2008) Sequencing and alignment of mitochondrial genomes of Tibetan chicken and two lowland chicken breeds. Science China Life Sciences. 51: 47-51.
Bellagamba, F., Moretti, V.M., Comincini, S., Valfare, F. (2001). Identification of species in animal feedstuffs by polymerase chain reaction restriction fragment length polymorphism analysis of mitochondrial DNA. Journal of Agricultural and Food Chemistry. 49: 3775-3781.
DiMauro, S. (2004). Mitochondrial diseases. BiochimicaetBiophysicaActa.1658:80-88.
Hall, T.A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In Nucleic acids symposium series.  41: 95-98. [London]: Information Retrieval Ltd., c1979-c2000.
Hiendleder, S., Lewalski, H., Wassmuth, R., Janke, A. (1998). The complete mitochondrial DNA sequence of the domestic sheep (Ovis aries) and comparison with the other major ovine haplotype. Journal of Molecular Evolution. 47:441-448.
Hu, Y., Zhu, Y., Pang, H. and Lan, D. (2016). Complete mitochondrial DNA and phylogenetic study of qionglai native black chicken. In MATEC Web of Conferences.62: 03004. EDP Sciences. 
Khodabakhshzadeh, R., Mohammadabadi, M.R., Esmailizadeh Koshkoieh, A., Moradi- Shahrebabak, H., Ansari Namin, S. (2015). Study of mutations available in first-halfexon 2 of GDF9 gene in crossbred sheep born from crossing of Romanov rams with Kermani ewes. Iranian Journal of Animal Science Research. 6: 395-403.
Knudsen, B., Knudsen, T., Flensborg, M., Sandmann, H., Heltzen, M., Andersen, A., Dickenson, M., Bardram, J., Steffensen, P., Mønsted, S., Lauritzen, T., Forsberg, R., Thanbichler, A., Jannick, D., Görlitz, L., Rasmussen, J., Tordrup, D., Værum, M., Nygaard, M., Hachenberg, C., Fisker, E., Dekker, P., Schultz, J., Hein, MK., Sinding, J.(2007). CLC Main Workbench. Version 5.5.Aarhus, Denmark, CLC bio.
Kumar, S., Stecher, G. and Tamura, K. (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular biology and evolution33:1870-1874.
Liu, L.L., Yang Y.Q., Liu Y.T., Yang, N., Xie, D., Zhen, H. (2018). Complete mitochondrial genome sequence of Zhuxiang chicken (Gallusgallus. domesticus) and its phylogenetic analysis from D-loop region. Mitochondrial DNA Part B. 3: 874-875.
Meadows, J.R.S., Hiendleder, S. and Kijas, J.W. (2011). Haplogroup relationships between domestic and wild sheep resolved using a mitogenome panel. Heredity. 106: 700-706.
Mohammadi, A., Nassiry, M.R., Mosafer, J., Mohammadabadi, M.R., Sulimova, G.E. (2009). Distribution of BoLA-DRB3 allelic frequencies and identification of a new allele in the Iranian cattle breed Sistani (Bosindicus). Russian Journal of Genetics. 45: 198-202.
Oka, T., Ino, Y., Nomura, K., Kawashima, S., Kuwayama, T., Hanada, H., Amano, T., Takada, M., Takahata, N., Hayashi, Y. and Akishinonomiya, F. (2007). Analysis of mtDNA sequences shows Japanese native chickens have multiple origins. Animal genetics38: 287-293.
Osman, S.A.M., Yonezawa, T. and Nishibori, M. (2016). Origin and genetic diversity of Egyptian native chickens based on complete sequence of mitochondrial DNA D-loop region. Poultry science95:1248-1256.
Smeitink, J., van den Heuvel, L., DiMauro, S. (2001). The genetics and pathology of oxidative phosphorylation. Nature Reviews Genetics. 2: 342-352.