The Effect of Iron Nano Oxide on performance, Egg Quality indices and Antioxidant status of laying hen

Document Type : Research Paper

Authors

1 Graduate Student in Poultry production and Husbandary, University of Birjand

2 Animal Science Departmet, Agricultural Faculty, University of Birjand

3 Assistant Professor in Genetics and Animal breeding, University of Birjand

Abstract

In order to investigate the effects of different levels of iron nano-oxide(INO) on performance, egg quality parameters and the antioxidant status of laying hens, 96 Bovens layer hens at the production peak(28 weeks) were used. The experiment done for 8 weeks in a completely randomized design with 3 treatments, 4 replicates and 8 birds in each replicate. Hens were fed with experimental diets containing 0, 50 and 100 mg iron nanooxide/kg of diet. The performance indices included egg production, egg weight, egg mass, feed intake and feed conversion ratio were daily recorded. The qualitative parameters included yolk color index, egg shape, yolk height index, Haugh unit, Eggshell thickness, eggshell strength, Specific gravity and relative weight of albumen, yolk and eggshell were determined at the end of each period(28 days). At the end of experiment, two birds per replicate were bleed and the blood biochemical parameters were studied.The results were revealed that the iron nano-oxide had no effect on performance indices. Total protein and enzyme activity of alanine aminotransferase were not affected by dietary INO.Dietary supplementation of INO decreased the serum concentration of cholesterol, triglyceride, and LDL, and increased serum concentration of HDL, iron, zinc. The antibody titer against Newcastle disease were increased with increasing the levels of dietary INO. The yolk and serum concentration of MDA was increased by the addition of iron nanoparticles. Therefore, the addition of iron oxide supplementation can improve performance indices, some qualitative characteristics of egg and immune response and decrease serum lipid in laying hens.

Keywords


افخمی اردکانی، م.، شیربند، م.، گلزاده، ع. ج.، سامانی، م.ا.، لطیفی، ا.، خیلاپور، م.، و جعفری، ن. (1391). تأثیر نانوذرات آهن بر غلظت آنزیم های کبدی، هورمون های تیروئیدی و هورمون محرک تیروئید در موش صحرایی. مجله دانشگاه علوم پزشکی شهرکرد، 6: 88-82.
ساکی، ع. ا.، عباسی نژاد، م.،  و احمدی، ا. (1393). اثرات استفاده از نانو ذرات آهن و متیونین مایع (اَلیمت) در تغذیه جنینی و جیره بر عملکرد جوجه های گوشتی. تحقیقات تولیدات دامی، 3(3): 71-57.
سروش، س. ز.، سالاری، س.، ساری، م.، فیاضی، ج.، و طباطبایی، ص. (1392). تأثیر سطوح مختلف عنصر روی بر عملکرد، صفات کیفی تخم­مرغ و برخی فراسنجه­های خونی مرغ تخمگذار. پژوهش­های تولیدات دامی، 6(11): 19-27.
فرخوی، م.، خلیقی سیگارودی، ت. نیک نفس، ف. 1386. راهنمای کامل پرورش طیور. انتشارات سازمان اقتصادی کوثر. تهران. ایران
صادقی، ق.ع.، مهری، م.، پوررضا، ج. (1385). تغذیه طیور اسکات. ارکان دانش.
محمدی، ه.، فرزین پور، ا.، و وزیری، ا. (1394). اثر نانو ذرات اکسید آهن بر برخی مواد معدنی زرده تخم در بلدرچین ژاپنی. اولین همایش ملی گیاهان دارویی، طب سنتی و کشاورزی ارگانیک، 7 آذرماه 1393. همدان. ایران. صفحات: 247-241.
محمدی موحد، م.، ستاری، م.، باباخانی، آ.، غفوری، ح.، و جوهری، س.ع. (1394). اثر نانوذرات اکسیدآهن بر سیستم دفاعی، آنتی­اکسیدانی و پراکسیداسیون چربی در بچه ماهیان کپور (Cyprinus corpio). پایان نامه کارشناسی ارشد، دانشکده منابع طبیعی، گروه شیلات، دانشگاه گیلان.
Abbasi, M., Zaghari, M., Ganjkhanlo M., and Khalaji, S. (2015). Is dietary iron requirement of broiler breeder hens at the lat stage of production cycle influenced by phytase supplementation? Journal of Applied Animal Research. 43: 166-176.
Ahn, D.U., Sell, J.L., Chen, C.J.X., Wu, C. and Lee, J.I. (1998). Effects of dietary vitamin E supplementation on lipid oxidation and volatiles content of irradiated, cooked turkey meat patties with different packaging. Poultry Science. 77: 912–920.
AndadnaRao, G., and Larkin, E.C. (1984). Role of dietary iron in lipid metabolism. Nutrition Research, 4: 145-151.
Arabi, F., Imandar, M., Negahdary, M., TorkamaniNoughbi, M., Akbari-Dastjerdi H., and Fazilati, M. (2012). Investigation anti-bacterial effect of zinc oxide nanoparticles upon life of listeria monocytogenes .Annals of Biological Research. 3: 3679-3685.
Behera, T., Swain, P., Rangacharullu, P.V. and Samanta, M. (2014). Nano-Fe as food additive improves the hematological and immunological parameters of fish, Labeo rohita H. Applied Nanoscience. 4(6): 687-694.
Bertchini, A.G., Fassani, E.J., Fialho, E.T. and Spadoni, J.A. (2000). Iron Supplementation for Commercial Laying Hens in Second Cycle of Production. Brazilian Journal of Poultry Science, 2(3): 267-272.
Buckiuniene, V., Gruzauskas, R., Kliseviciute, V., Raceviciute-Stupeliene, A., Svirmickas, G., Bliznikas, S., Miezeliene, A., Alencikiene, G. and Grashorn, M.A. (2016). Effect of organic and inorganic iron on iron content, fatty acid profile, content of malondialdehyde, texture and sensory properties of broiler meat. European Poultry Science, 80: DOI: 10.1399/eps.2016.141.
Butzen, P., Root, E. and Starcher, B. (1985). Zinc secretion in the oviduct of the coturnix quail.Biological Trace Element Research. 8: 283-300.
Cao, J., Henry, P.R., Guo, R., Holwarda, R.A., Toth, J.P., Littell, R.C., Miles, R.D. and Ammerman, C.B. (2000). Chemical characteristics and relative bioavailability of supplemental organic zinc sources for poultry and ruminants. American Society of Animal Science. 78:2039-2054.
Dayeme, A.A. Hossain, M.K., Lee, S.B., Kim, K., Saha, S. K., Yang, G., Choi, H.Y., and Cho, S. (2017). The role of reactive oxygen species (ROS) in the biological activities of metallic nanoparticles. International Journal of Molecular Sciences, 18: 120-141.
Feng, J., Ma, W.Q., Xu, Z.R., Wang, Y.Z. and Liu, J.X. (2009). The effect of iron glycine chelate on tissue mineral levels, fecal mineral concentration, and liver antioxidant enzyme activity in weanling pigs. Animal Feed Science and Technology. 150: 106-113.
Feng, J., Ma, W.Q., Xu, Z.R., Wang, Y.Z. and Liu, J.X. (2007). Effects of iron glycine chelate on growth, haematological and immunological characteristics in weaning pigs. Animal Feed Science and Technology. 134:261-272.
Francisco, H. S. J., Facundo, R., Diana, C.C.C.P., Fidel, M.G., Alberto, E.M., Amaury, D.J.P.G., Humberto, T.P. and Gabriel, M.C. (2008). The antimicrobial sensitivity of Streptococcus mutans to nanoparticles of silver, zinc oxide and gold. Nanomedicine: Nanotechnology, Biology and Medicine. 4: 237-240.
Gatlin, I. and Wilson, R.P. (1986). Characterization of iron deficiency and the dietary iron requirement of fingerling channel catfish.  The Journal of Aquaculture. 52: 191-198.
Ghasempour, S., Shokrgozar, M.A., Ghasempour, R. and Alipour, M. (2014). The Iron Nanorods Toxicity on L929 cell line. Journal of Isfahan Medical School. 31: 1973-1983.
Hirao, S., Yamada, J. and Kikuchi, R. (1955). Relation between chemical constituents of rainbow trout eggs and the hatching rate. Nippon Suisan Gakkaishi. 21: 240-243.
Liao, X., Ma, C., Lu, L., Zhang, L. and Luo, X. (2017). Determination of dietary iron requirements by full expression of iron-containing cytochrome c oxidase in the heart of broilers from 22 to 42 d of age. British Journal of Nutrition, 118: 493–499.
Ma, W.Q., Sun, H., Zhou, Y., Wu, J. and Feng, J. (2012). Effects of iron glycine chelate on growth, tissue mineral concentrations, fecal mineral excretion, and liver antioxidant enzyme activities in broilers. Biological Trace Element Research. 149: 204-211
Milanović, S., Lazarević, M., Jokić, Z., Jovanović, I., Pešut, O., Kirovski, D. and Marinković, D. (2008). The influ-ence of organic and inorganic Fe supplementation on red blood picture, immune response and quantity of iron in or-gans of broiler chickens. Acta Veterinaria. 58:179–189.
Mokhtari, M., Shariati, M. and Geshmardi, N. (2007). Oral effects of lead on thyroid hormones and liver enzymes in rats. Hormozgan Medical Journal. 11(2): 115-20.
Moghaddam, H. N. and Jahanian, R. (2009). Immu-nological responses of broiler chicks can be modulated by dietary supplementation of zinc-methionine in place of inor-ganic zinc sources. Asian-Australas. Journal Animal Science. 22:396–403.
Nadadur, S. S., Srirama, K. and Mudipalli, A. (2008). Iron transport and homeostasis mechanism: Their role in health and diseas. Indian Journal Medical Research. 128:533-544.
Nikonov, I.N., Folmanis, Y.G., Folmani, G.E., Kovalenko, L.V., Lapteva, G.Y., Egorov, I.A., Fisinin V.I. and Tananaev, G. (2011). Iron nanoparticles as a food additive for poultry. Doklady Biological Sciences, 440: 328-331.
Park, S. W., Namkung, H., Ahn, H.J. and Paik, I.K. (2004). Production of iron enriched eggs of laying hens. Asian-Australian Journal of Animal Science. 456-756.
Rai, M., Yadav, A. and Gade, A. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances. 27: 76-83.
Ramadan, N.A., Omar, A.S., Bahakaim, A.S.A. and Osman, S.M.H. (2010). Effect of using different levels of iron with zinc and copper in layer's diet on egg iron enrichment. International Journal of Poultry Science. 9 (9): 842-850.
Ramsden, J.J. (2005). What is nanotechnology?. Nanotechnology Perceptions. 1: 3-17.
Saldenha, E.S.P.B., Garcia, E.A., pizzolante, C.C., Faittarone, A.B.G., Sechinato, A., Molino, A.B. and Lagana, C. (2009). Effect of Organic Mineral Supplementation on the Egg Quality of semi-Heavy layers in Their Second Cycle of Lay. Brazilian Journal of Poultry Science.241-247.
Son, J., Liu, D. and Shi, R. (2015). Supplemental dietary iron glycine modifies growth, immune function, and antioxidant enzyme activities in broiler chickens. Livestock Science. 176:129-134.
Sunder, G. S., Panda, A.K., Gopinath, N.C.S., Rao, S.V.R., Raju, M., Reddy, M.R. and Kumar, V. (2008). Effects of higher levels of zinc supplementation on perfor-mance, mineral availability, and immune competence in broiler chickens Journal of Applied Poultry Research. 17:79–86.
Tako, E., Rutzke, M.A. and Glahn, R.P. (2010). Using the domestic chicken (gallus gallus) as an in vivo model for iron bioavilability. Poultry Science. 89: 514-521.
Yang, X.J., Sun, X.X., Li, C.Y., Wu, X.H. and Yao, J.H. (2011). Effects of copper, iron, zinc, and manganes supplementation in a corn and soybean meal diet on the growth performance, meat quality, and immune responses of broiler chickens. Poultry Science Association, Inc. 263.
Yousefi, V., Amraeai, E., Saleh, H., Sadeghi, L., Najafi, L. and Fazilati, M. (2013). Evaluation of ironoxide nanoparticles effects on tissue and enzymes of thyroid in rats. International Research Journal of Biological Science. 7: 67-69.