Document Type : Research Paper

Authors

1 Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad

2 Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.

Abstract

This study was conducted to evaluate antibacterial properties of Optocid acidifier against pathogenic bacteria, growth performance, nutrient digestibility, blood calcium and phosphorus concentrations, and intestinal histology of broiler chickens. In vitro coundition the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) of Optocid against pathogenic bacteria of poultry (Salmonella, Escherichia coli and Clostridium perfringens) were evaluated. In vivo stage, a total of 100 one-day-old male Ross-308 broiler chicks were allotted to a complete randomized design with 2 treatments, fed non-supplemented diet and fed diet containing 0.1% Optocid with 5 replications and 10 birds each. The results of MIC and MBC revealed that this product was effective against all three pathogenic bacteria. Dietary Optocid supplementation significantly decrease 10d live weight and daily feed intake in 2-10 day of age period. Dietary Optocid supplementation was not affect on growth performance traits in 11-23 day of age. During the finisher (24-42d) and the whole experimental (2-42d) periods the final live body weight, daily weight gain, feed conversion ratio, European production efficiency factor and economic performance improved as diet supplement by Optocid. Dietary Optocid supplementation increase protein digestibility, and intestinal villi height. It is concluded, dietary Optocid supplementation (0.1%) can be effective on growth performance, health and development of the digestive system in broiler chickens.

Keywords

Main Subjects

Abdel-Azeem, F., El-Hommosany Y.M., & Nematallah, G.M. (2000). Effect of citric acid in diets with different starch and fiber levels on productive performance and some physiological traits of growing rabbits. Egypt Journal Rabbit Science, 10: 121-145.
Abdel-Fattah, S.A., El-Sanhoury, M.H., El-Mednay N.M., & Abdel-Azeem, F. (2008). Thyroid activity, some blood constituents, organs morphology and performance of broiler chicks fed supplemental organic acids. International Journal of Poultry Science, 7: 215-222.
Abdo, M.و & Zeinb A.  (2004). Efficacy of acetic acid in improving the utilization of low protein-low energy broiler diets. Egypt Poultry Science, 24: 123-141.
Afsharmanesh, M., & Pourreza, J. (2005). Effects of calcium, citric acid, ascorbic acid, vitamin D3 on the efficacy of microbial phytase in broiler starters fed wheat-based diets I. Performance, bone mineralization and ileal digestibility. International journal of poultry science, 418-424.
Akbari, M.R., Kermanshahi H., & Kalidari G.A. (2004). Effect of acetic acid administration in drinking water on performance and growth characteristics and ileal microflora of broiler chickens. Journal of Science and Technology of Agriculture and Natural Resources, 3: 139-147 (In Persian).
Al-Kassi, A. G., & Mohssen, M. A. (2009). Comparative study between single organic acid effect and synergistic organic acid effect on broiler performance. Pakistan Journal of Nutrition, 8(6), 896-899.
Allahdo, P., Ghodraty, J., Zarghi, H., Saadatfar, Z., Kermanshahi H., & Edalatian Dovom, MR. (2018). Effect of probiotic and vinegar on growth performance, meat yields, immune responses, and small intestine morphology of broiler chickens. Italian Journal of Animal Science, 17:3, 675-685.
Antongiovanni, M., Buccioni, A., Petacchi, F., Leeson, S., Minieri, S., Martini, A., & Cecchi, R. (2007). Butyric acid glycerides in the diet of broiler chickens: effects on gut histology and carcass composition. Italian Journal of Animal Science, 6(1), 19-25.
AOAC: Association of Official Analytical Chemists 1990. Official Methods of Analysis, 15th Ed, Arlington, Virginia, USA.
Balouiri, M., Sadiki, M., & Ibnsouda, S. K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of pharmaceutical analysis, 6(2), 71-79.
Bolton, W., & Dewar, W.A. (1965). The digestibility of acetic, propionic and butyric acids by the fowl. British Poultry Science, 6: 103-105.
Brenes, A., Viveros, A., Arija, I., Centeno, C., Pizarro, M., & Bravo, C. )2003(. The effect of citric acid and microbial phytase on mineral utilization in broiler chicks. Animal Feed Science and Technology, 110: 201-219.
Chaveerach, P., Keuzenkamp, D.A. Lipman L.J.A. & Van Knapen F. )2004(. Effect of organic acids in drinking water for young broilers on Campylobacter infection, volatile fatty acid production, gut microflora and histological cell changes. Poultry Science, 83: 330-334.
Chowdhury, R., Islam, K.M.S., Khan, M.J., Karim, M.R., Haque M.N., & Khatun, M. (2009). Effect of citric acid, avilamycin and their combination on the performance, tibia ash and immune status of broilers. Poultry Science, 8: 1616-1622.
Dai, D., Qiu, K., Zhang, H. J., Wu, S. G., Han, Y. M., Wu, Y. Y., ... & Wang, J. (2021). Organic acids as alternatives for antibiotic growth promoters alter the intestinal structure and microbiota and improve the growth performance in broilers. Frontiers in Microbiology, 11, 618144.
De Nova, P. J., Carvajal, A., Prieto, M., & Rubio, P. (2019). In vitro susceptibility and evaluation of techniques for understanding the mode of action of a promising non-antibiotic citrus fruit extract against several pathogens. Frontiers in Microbiology, 10, 884.
Dibner, J. J., & Buttin, P. (2002). Use of organic acids as a model to study the impact of gut microflora on nutrition and metabolism. Journal of applied poultry research, 11(4), 453-463.
Edwards, H. M., & Baker, D. H. (1999). Effect of dietary citric acid on zinc bioavailability from soy products using an egg white diets with zinc sulfate hepatahydrate as the stander. Poultry Science, 78(suppl 1), 576.
Fascina, V. B., Sartori, J. R., Gonzales, E., Carvalho, F. B. D., Souza, I. M. G. P. D., Polycarpo, G. D. V., ... & Pelícia, V. C. (2012). Phytogenic additives and organic acids in broiler chicken diets. Revista Brasileira de Zootecnia, 41(10), 2189-2197.
Garcia, V., Catala-Gregori, P., Hernandez, F., Megias, M. D., & Madrid, J. (2007). Effect of formic acid and plant extracts on growth, nutrient digestibility, intestine mucosa morphology, and meat yield of broilers. Journal of applied poultry research, 16(4), 555-562.
Hernandez, F., Garcia, V., Madrid, J., Orengo, J., Catalá, P., & Megias, M. D. (2006). Effect of formic acid on performance, digestibility, intestinal histomorphology and plasma metabolite levels of broiler chickens. British Poultry Science, 47(1), 50-56.
Hunter, J. M., Anders, S. A., Crowe, T., Korver, D. R., & Bench, C. J. (2017). Practical assessment and management of foot pad dermatitis in commercial broiler chickens: A Field Study. Journal of Applied Poultry Research, 26(4), 593-604.
Iji, P. A., & Tivey, D. R. (1998). Natural and synthetic oligosaccharides in broiler chicken diets. World's Poultry Science Journal, 54(2), 129-143.
Iqbal, H., Rahman, A., Khanum, S., Arshad, M., Badar, I. H., Asif, A. R., ... & Iqbal, M. A. (2021). Effect of Essential Oil and Organic Acid on Performance, Gut Health, Bacterial Count and Serological Parameters in Broiler. Brazilian Journal of Poultry Science, 23 (3), 1-10.
Islam, M.Z., Khandaker, Z.H., Chowdhury S.D., & Islam K.M.S. (2008). Effect of citric acid and acetic acid on the performance of broilers. Journal of the Bangladesh Agricultural University, 6: 315-320.
Javadmanesh, A., Mohammadi, E., Mousavi, Z., Azghandi, M., & Tanhaiean, A. (2021). Antibacterial effects assessment on some livestock pathogens, thermal stability and proposing a probable reason for different levels of activity of thanatin. Scientific reports, 11(1), 1-10.
Kalantar, M., Khajali, F., Yaghobfar, A., Pourreza, J., & Akbari, M.R. (2017). Effects of COMBO® enzyme supplemented wheat and wheat bran diet on growth performance and digesta physicochemical properties of broilers. Research on Animal Production, 8, 49-57 (In Persian).
Kim, Y. Y., Kil, K. Y., & Oh, H. Y. In K. Han. 2005. Acidifier as an alternative material to antibiotics in animal feed. Asian-Australasian Journal of Animal Sciences, 18(7), 1048.
Kirchgessner, M., & Roth, F. X. (1991). Ergotropic effects through the nutritive use of organic acids. zentralblatt fur hygiene und umweltmedizin. International Journal of Hygiene and Environmental Medicine, 191(2-3), 265-276.
Komijani, A., & Sobhani, H. (2005). Economic Analysis Theory and Application. (8th ed). University of Tehran.
Kum, S., Eren, U., Onol, A., & Sandikci, M. (2010). Effects of dietary organic acid supplementation on the intestinal mucosa in broilers. Revista Brasileira de Medicina Veterinaria, 10, 463-468.
Lee, K. W., Everts, H., Kappert, H. J., Frehner, M., Losa, R., & Beynen, A. C. (2003). Effects of dietary essential oil components on growth performance, digestive enzymes and lipid metabolism in female broiler chickens. British poultry science, 44(3), 450-457.
Leeson S., Namkung, H., Antongiovanni, M., & Lee, E.H. (2005).  Effect of butyric acid on the performance and carcass yield of broiler chickens. Poultry Science. 84:1418–1422.
Liljeberg, H., & Fjorck, I. (1998). Delayed gastric emptying rate may explain improved glycaemia in healthy subjects to a starchy meal with added vinegar. European Journal of Clinical Nutrition, 52: 368-371.
Mousavi, Z., Tanhaeian, A., & Javadmanesh, A. (2022). Evaluation of antifungal properties of thanatin peptide and Chinaberry extract on bovine mastitis pathogens in vitro. Veterinary Researches & Biological Products, 35(1), 215-221.
Mroz, Z., Koopmans, S. J., Bannink, A., Partanen, K., Krasucki, W., Øverland, M., & Radcliffe, S. (2006). Carboxylic acids as bioregulators and gut growth promoters in nonruminants. In Biology of growing animals, (4), 81-133.
Murry, A. C., Hinton, A., & Morrison, H. (2004). Inhibition of growth of Escherichia coli, Salmonella typhimurium, and Clostridia perfringens on chicken feed media by Lactobacillus salivarius and Lactobacillus plantarum. International Journal of Poultry Science, 3(9), 603-607.
Nabavi, S. F., Daglia, M., Moghaddam, A. H., Habtemariam, S., & Nabavi, S. M. (2014). Curcumin and liver disease: from chemistry to medicine. Comprehensive Reviews in Food Science and Food Safety, 13(1), 62-77.
Nabavi, S. F., Nabavi, S. M., Habtemariam, S., Moghaddam, A. H., Sureda, A., Jafari, M., & Latifi, A. M. (2013). Hepatoprotective effect of gallic acid isolated from Peltiphyllum peltatum against sodium fluoride-induced oxidative stress. Industrial Crops and Products, 44, 50-55.
Nabavi, S. M., Marchese, A., Izadi, M., Curti, V., Daglia, M., & Nabavi, S. F. (2015). Plants belonging to the genus Thymus as antibacterial agents: From farm to pharmacy. Food chemistry, 173, 339-347.
Naveed, R., Hussain, I., Tawab, A., Tariq, M., Rahman, M., Hameed, S., ... & Iqbal, M. (2013). Antimicrobial activity of the bioactive components of essential oils from Pakistani spices against Salmonella and other multi-drug resistant bacteria. BMC complementary and alternative medicine, 13(1), 1-10.
Nikaido, H., & Vaara, M. (1985). Molecular basis of bacterial outer membrane permeability. Microbiological reviews, 49(1), 1-32.
Park, K. W., Rhee, A. R., Um, J. S., & Paik, I. K. (2009). Effect of dietary available phosphorus and organic acids on the performance and egg quality of laying hens. Journal of Applied Poultry Research, 18(3), 598-604.
Paul, S. K., Halder, G., Mondal, M. K., & Samanta, G. (2007). Effect of organic acid salt on the performance and gut health of broiler chicken. The Journal of Poultry Science, 44(4), 389-395.
Pearlin, B. V., Muthuvel, S., Govidasamy, P., Villavan, M., Alagawany, M., Ragab Farag, M., ... & Gopi, M. (2020). Role of acidifiers in livestock nutrition and health: A review. Journal of Animal Physiology and Animal Nutrition, 104(2), 558-569.
Pelicano, E. R. L., Souza, P. A., Souza, H. B. A., Figueiredo, D. F., Boiago, M. M., Carvalho, S. R., & Bordon, V. F. (2005). Intestinal mucosa development in broiler chickens fed natural growth promoters. Brazilian Journal of Poultry Science, 7(4), 221-229.
Pinchasov, Y., & Elmaliah, S. (1995). Broiler chick responses to anorectic agents: Dietary acetic and propionic acids and the blood metabolites. Annals of Nutrition and Metabolism, 39: 107-116.
Ranasinghe, P., Jayawardana, R., Galappaththy, P., Constantine, G. R., de Vas Gunawardana, N., & Katulanda, P. (2012). Efficacy and safety of ‘true’cinnamon (Cinnamomum zeylanicum) as a pharmaceutical agent in diabetes: a systematic review and meta‐analysis. Diabetic medicine, 29(12), 1480-1492.
Ricke, S.C. (2003). Perspectives on the use of organic acids and short chain fatty acids as antimicrobials. Poultry Science, 82: 632-639.
Riemensperger, A. V., Bachinger, D., Schaumberger, S., Urbaityte, R., & Pasteiner, S. (2012). The effect of an organic acid blend, cinnamaldehyde and a permeabilising substance on the inhibition of bacterial growth in vitro and growth performance of weaning pigs. veterinary medicine zootechnical, 60, 59-66.
Samanta, S., Haldar, S., & Ghosh, T. K. (2010). Comparative efficacy of an organic acid blend and bacitracin methylene disalicylate as growth promoters in broiler chickens: effects on performance, gut histology, and small intestinal milieu. Veterinary medicine international, 2010.
Seidavi, A., Tavakoli, M., Slozhenkina, M., Gorlov, I., Hashem, N. M., Asroosh, F., ... & Swelum, A. A. (2021). The use of some plant-derived products as effective alternatives to antibiotic growth promoters in organic poultry production: a review. Environmental Science and Pollution Research, 28(35), 47856-47868.
Thompson, j.L., & Hinton, M. (1997). Antibacterial activity of formic and propionic acids in the diet of hens and salmonellas in the crop. British Poultry Science, 38: 159-165.
UFFDA. (1992). User-friendly feed formulation done again University of Georgia. Athens (GA): UFFDA.
Vande Maele, L., Heyndrickx, M., De Pauw, N., Mahu, M., Verlinden, M., Haesebrouck, F., ... & Pasmans, F. (2013). In vitro sensitivity of Brachyspira hyodysenteriae to organic acids and essential oil components. In 6th Conference on Colonic Spirochaetal Infections in Animals and Humans, 86-86.
Wang, S., Zeng, X., Yang, Q., & Qiao, S. (2016). Antimicrobial peptides as potential alternatives to antibiotics in food animal industry. International journal of molecular sciences, 17(5), 603-614.