Document Type : Research Paper

Authors

1 Razi university

2 ASRI

3 Assistant professor of Animal Science Research Institute of Iran

Abstract

The aim of this study was to investigate the effect of dietary zinc nanoparticles (ZnNPs) on the quantitative and qualitative characteristics of ram semen. For this purpose, 15 adult Zandi rams (3 to 4 years old) were used. Rams were fed the following diets during 60 days: 1) the base diet, 2) base diet containing 35 mg/kg zinc nanoparticles and 3) base diet containing 70 mg/kg zinc nanoparticles. Sperm collection was done from the first day of the experiment for 60 days and once every 10 days by artificial vagina. Quantitative and qualitative sperm parameters including semen volume, number of spermatozoa, motility, membrane integrity and viability were evaluated. The results showed that diet supplementation with 70 mg/kg of zinc nanoparticles improved the number of sperm, motility, progressive motility, membrane integrity and viability compared to the control group and the group receiving 35 mg/kg of zinc nanoparticles (P <0.05). Therefore, adding zinc nanoparticles to the diet is a suitable method to improve semen quality and thus increase reproductive performance in ram.

Keywords

Abaspour Aporvari, H., Mamoei, M., Tabatabaei Vakili, S., Zareei, M., & Dadashpour Davachi, N. (2018). The effect of oral administration of zinc oxide nanoparticles on quantitative and qualitative properties of Arabic ram sperm and some antioxidant parameters of seminal plasma in the non-breeding season. Archives of Razi Institute. 73 (2), 121-129. doi: 10.22092/ARI.2018.120225.1187
Aghaei, A., Tabatabaei, S., & Nazari, M. (2010). The correlation between mineral concentration of seminal plasma and spermatozoa motility in rooster. Journal of Animal and Veterinary Advances, 9(10), 1476-1478. doi: 10.3923/javaa.2010.1476.1478
Aksoy, Y., Aksoy, H., Altınkaynak, K., Aydın, H. R., & Özkan, A. (2006). Sperm fatty acid composition in subfertile men. Prostaglandins, Leukotrienes and Essential fatty acids, 75(2), 75-79. doi: 10.1016/j.plefa.2006.06.002
Al-Anazi, Y., Al-Mutary, M. G., Alfuraiji, M. M., Al-himaidi, A. R., Al-Ghadi, M., & Ammari, A. (2017). Seasonal variations in scrotal circumference and semen characteristics of Naimi and Najdi rams in Saudi Arabia. South African Journal of Animal Science, 47(4), 454-459. doi: 10.4314/sajas.v47i4.4
Ali, H., Ahmed, M., Baig, M., & Ali, M. (2007). Relationship of zinc concentrations in blood and seminal plasma with various semen parameters in infertile subjects. Pakistan Journal of Medical Sciences, 23(1), 111.
Aslani, B. A., & Ghobadi, S. (2016). Studies on oxidants and antioxidants with a brief glance at their relevance to the immune system. Life sciences, 146, 163-173. doi.org/10.1016/j.lfs.2016.01.014
Baumber, J., Ball, B. A., Gravance, C. G., Medina, V., & Davies‐morel, M. C. (2000). The effect of reactive oxygen species on equine sperm motility, viability, acrosomal integrity, mitochondrial membrane potential, and membrane lipid peroxidation. Journal of andrology, 21(6), 895-902. doi: 10.1002/j.1939-4640.2000.tb03420.x
Bedwal, R. S., & Bahuguna, A. (1994). Zinc, copper and selenium in reproduction. Experientia, 50, 626-640. doi: 10.1007/BF01952862.
Bucak, M. N., Ataman, M. B., Başpınar, N., Uysal, O., Taşpınar, M., Bilgili, A., & Akal, E. (2015). Lycopene and resveratrol improve post‐thaw bull sperm parameters: sperm motility, mitochondrial activity and DNA integrity. Andrologia, 47(5), 545-552. doi: 10.1111/and.12301. 
Byar, D. P. (1974). Zinc in male sex accessory organs: distribution and hormonal response. Male accessory sex organs (pp. 161-171) Academic Press
Chia, S. E., Ong, C. N., Chua, L. H., Ho, L. M., & Tay, S. K. (2000). Comparison of zinc concentrations in blood and seminal plasma and the various sperm parameters between fertile and infertile men. Journal of andrology, 21(1), 53-57. doi: 10.1002/J.1939-4640.2000.TB03275.X
Dani, V., & Dhawan, D. K. (2005). Radioprotective role of zinc following single dose radioiodine  exposure to red blood cells of rats. Indian Journal of Medical Research, 122(4), 338.
Dawei, A. I., Zhisheng, W., & Anguo, Z. (2010). Protective effects of Nano-ZnO on the primary culture mice intestinal epithelial cells in in vitro against oxidative injury. World Journal of Agricultural Sciences, 6(2), 149-153.
Dissanayake, D. M. A. B., Wijesinghe, P. S., Ratnasooriya, W. D., Wimalasena, S., & Palihawadana, T. S. (2006). Effects of different Zinc levels in the sperm culture medium on sperm recovery and quality of sperms in the swim up procedure for sperm processing. Ceylon Journal of Medical Science. 49: 21-27. doi: 10.4038/cjms.v49i1.126
Ebisch, I. M. W., Thomas, C. M. G., Peters, W. H. M., Braat, D. D. M., & Steegers-Theunissen, R. P. M. (2007). The importance of folate, zinc and antioxidants in the pathogenesis and prevention of subfertility. Human reproduction update, 13(2), 163-174. doi: 10.1093/humupd/dml054.
Eggert-Kruse, W., Zwick, E. M., Batschulat, K., Rohr, G., Armbruster, F. P., Petzoldt, D., & Strowitzki, T. (2002). Are zinc levels in seminal plasma associated with seminal leukocytes and other determinants of semen quality?. Fertility and sterility, 77(2), 260-269. doi: 10.1016/s0015-0282(01)02974-0.
Goodarzi, N., Soroor, M. N., Rahimi-Feyli, P., & Kazemi, S. (2018). Testicular stereology of lambs supplemented with organic and inorganic zinc. Bulgarian Journal of Veterinary Medicine. 1311-1477. doi: 10.15547/bjvm.1070
Hozyen, H. F., Ahmed, H. H., Essawy, G. E. S., & Shalaby, S. I. A. (2014). Seasonal changes in some oxidant and antioxidant parameters during folliculogenesis in Egyptian buffalo. Animal reproduction science, 151(3-4), 131-136. doi: 10.1016/j.anireprosci.2014.10.005.
Ibrahim, S. A., & Yousri, R. M. (1992). The effect of dietary zinc, season and breed on semen quality and body weight in goats. International Journal of Animal Sciences, 7 (1), 5-12.
Khan, R. U. (2011). Antioxidants and poultry semen quality. World's poultry science journal, 67(2), 297-308. doi.org/10.1017/S0043933911000316
Kendall, N. R., McMullen, S., Green, A., & Rodway, R. G. (2000). The effect of a zinc, cobalt and selenium soluble glass bolus on trace element status and semen quality of ram lambs. Animal reproduction science, 62(4), 277-283. doi.org/10.1016/S0378-4320(00)00120-2
Kumar, N., Verma, R. P., Singh, L. P., Varshney, V. P., & Dass, R. S. (2006). Effect of different levels and sources of zinc supplementation on quantitative and qualitative semen attributes and serum testosterone level in crossbred cattle (Bos indicus $\bf\times $ Bos taurus) bulls. Reproduction Nutrition Development, 46(6), 663-675. doi: 10.1051/rnd:2006041.
Kumar, H., Bhardwaj, K., Nepovimova, E., Kuča, K., Singh Dhanjal, D., Bhardwaj, S., & Kumar, D. (2020). Antioxidant functionalized nanoparticles: A combat against oxidative stress. Nanomaterials, 10(7), 1334. doi: 10.3390/nano10071334
Lewis-Jones, D. I., Aird, I. A., Biljan, M. M., & Kingsland, C. R. (1996). Andrology: Effects of sperm activity on zinc and fructose concentrations in seminal plasma. Human reproduction, 11(11), 2465-2467. doi: 10.1093/oxfordjournals.humrep.a019138.
Moce, E., Arouca, M., Lavara, R., & Pascual, J. J. (2000, July). Effect of dietary zinc and vitamin supplementation on semen characteristics of high growth rate males during summer season. In Proceedings of the 7th World Rabbit Congress (pp. 203-209).
Nasr-Esfahani MH, Tavalaee M, Deemeh M. (2008). Origins and Evaluation of DNA Damage in Infertile Individual. Journal of Iranian Anatomical Sciences 6:489-500
Ogbuewu, I. P., Aladi, N. O., Etuk, I. F., Opara, M. N., Uchegbu, M. C., Okoli, I. C., & Iloeje, M. U. (2010). Relevance of oxygen free radicals and antioxidants in sperm. Res. J. Vet. Sci, 3, 138-164. doi: 10.3923/rjvs.2010.138.164
Rahman, H. U., Qureshi, M. S., & Khan, R. U. (2014). Influence of dietary zinc on semen traits and seminal plasma antioxidant enzymes and trace minerals of b eetal bucks. Reproduction in Domestic Animals, 49(6), 1004-1007. doi: 10.1111/rda.12422. Epub 2014 Sep 26.
Rao, K. M., & Sresty, T. V. S. (2000). Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan (L.) Millspaugh) in response to Zn and Ni stresses. Plant science, 157(1), 113-128. doi: 10.1016/s0168-9452(00)00273-9.
Reed, M. L., Ezeh, P. C., Hamic, A., Thompson, D. J., & Caperton, C. L. (2009). Soy lecithin replaces egg yolk for cryopreservation of human sperm without adversely affecting postthaw motility, morphology, sperm DNA integrity, or sperm binding to hyaluronate. Fertility and sterility, 92(5), 1787-1790. doi: 10.1016/j.fertnstert.2009.05.026. 
Revell, S. G., & Mrode, R. A. (1994). An osmotic resistance test for bovine semen. Animal Reproduction Science, 36(1-2), 77-86. doi.org/10.1016/0378-4320(94)90055-8
Root, A. W., Duckett, G., Sweetland, M., & Reiter, E. O. (1979). Effects of zinc deficiency upon pituitary function in sexually mature and immature male rats. The Journal of nutrition, 109(6), 958-964. doi: 10.1093/jn/109.6.958.
Saleh, R. A., & Agarwal. A. (2002). Oxidative stress and male infertility: from research bench to clinical practice. Journal of Andrology, 23(6), 737-752.‏ doi: 10.4236/oju.2019.91001
Salmani, H., Towhidi, A., Zhandi, M., Bahreini, M., & Sharafi, M. (2014). In vitro assessment of soybean lecithin and egg yolk based diluents for cryopreservation of goat semen. Cryobiology, 68(2), 276-280. doi: 10.1016/j.cryobiol.2014.02.008.
Singh, R., & Lillard Jr, J. W. (2009). Nanoparticle-based targeted drug delivery. Experimental and molecular pathology, 86(3), 215-223.‏ doi: 10.1016/j.yexmp.2008.12.004.
Stanković, H., & Mikac-Dević, D. (1976). Zinc and copper in human semen. Clinica Chimica Acta, 70(1), 123-126. doi: 10.1016/0009-8981(76)90013-9.
Tan, Y. H., Tischfield, J., & Ruddle, F. H. (1973). The linkage of genes for the human interferon-induced antiviral protein and indophenol oxidase-B traits to chromosome G-21. The Journal of Experimental Medicine, 137(2), 317-330. doi: 10.1084/jem.137.2.317
Underwood, E. J., & Somers, M. (1969). Studies of zinc nutrition in sheep. I. The relation of zinc to growth, testicular development, and spermatogenesis in young rams. Australian Journal of Agricultural Research, 20(5), 889-897. doi.org/10.1071/AR9690889
Wang, X., Wang, W., Li, L., Perry, G., Lee, H. G., & Zhu, X. (2014). Oxidative stress and mitochondrial dysfunction in Alzheimer's disease. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1842(8), 1240-1247. doi: 10.1016/j.bbadis.2013.10.015. Epub 2013 Nov 1.
Wong, W. Y., Merkus, H. M., Thomas, C. M., Menkveld, R., Zielhuis, G. A., & Steegers-Theunissen, R. P. (2002). Effects of folic acid and zinc sulfate on male factor subfertility: a double-blind, randomized, placebo-controlled trial. Fertility and sterility, 77(3), 491-498. doi: 10.1016/s0015-0282(01)03229-0.
Zaniboni, L., Rizzi, R., & Cerolini, S. (2006). Combined effect of DHA and α-tocopherol enrichment on sperm quality and fertility in the turkey. Theriogenology, 65(9), 1813-1827. doi: 10.1016/j.theriogenology.2005.10.013.
Zhang, L., Wang, Y. X., Xiao, X., Wang, J. S., Wang, Q., Li, K. X., & Zhan, X. A. (2017). Effects of zinc glycinate on productive and reproductive performance, zinc concentration and antioxidant status in broiler breeders. Biological Trace Element Research, 178, 320-326. doi: 10.1007/s12011-016-0928-4.