Polymorphism of TFAM gene and its association with growth traits in Sistani cattle

Document Type : Research Paper

Authors

1 MS.c of Animal Breeding and Genetics . University of Zabol

2 Assistant professor of animal science

3 Assistant Professor, Animal Breeding and Genetics, University of Zabol

Abstract

Sistani beef cattle is a native breed of east of Iran that as a valuable genetic resource in the ‎tropical area could be good a candidate to produce high quantity of muscular‏ ‏carcass portions ‎with high‏ ‏efficiency. In order to explore the Mitochondrial transcription factor A gene ‎‎(TFAM) polymorphisms using PCR-RFLP, 150 Sistani cows were randomly selected and ‎then blood samples were taken from the jugular vein of each animal individually. ‎Thereafter, blood samples were‏ ‏salting-out and electrophoresed with 1% agarose gel. The ‎position of the TFAM promoter region amplified by PCR and PCR products with 801bp ‎length were sliced by‏ ‏BsuRI enzyme. Digestion products on 3% agarose gel were shown by ‎electrophoresis and staining with ethidium bromide. The patterns of digestion in AA ‎homozygotes, CC homozygotes, and AC heterozygotes were as follows: three bands with ‎‎152, 187, and 462bp; four bands with 83, 104, 152, and 462bp; and five bands with 83, 104, ‎‎152, 187, and 462bp, respectively. The results showed that the position of TFAM population ‎deviated from the Hardy-Weinberg equilibrium (P <0.05). Shannon index (I), Nei index, ‎observed heterozygosity, and expected heterozygosity were 0.69, 0.49, 0.37, and 0.50, ‎respectively. In conclusion, no significant differences between genotypes of Sistani cattle ‎were observed for TFAM gene polymorphism and growth traits.‎

Keywords


بیرجندی، م. ر. (1376). بررسی وضعیت پرورش و تعیین توان تولید شیر و خصوصیات شیرواری گاو سیستانی در منطقه سیستان. چکیده طرح­های تحقیقاتی وزارت جهاد سازندگی (جلد دوم). ص 368-370. وزارت جهاد سازندگی.
Ahmetov,  I. I., Popov D. V., Missina S. S., Vinogradova O. L. and Rogozkin V. A. (2010). Association of Mitochondrial Transcription Factor (TFAM) gene polymorphism with physical performance in Athletes. Human Physiology. 36: 229–233.
Amaral A., Ramalho-Santos J. and John J. C. (2007). The expression of polymerase gamma and mitochondrial transcription factor A and the regulation of mitochondrial DNA content in mature human sperm. Human Reproduction. 22: 1585-1596.
Ayres D. R., Souza F. R. P., Mercadante M. E. Z., Fonseca L. F. S., Tonhati H., Cyrillo J. N. S. G., Bonilha S. F. M. and Albuquerque  L. G. (2010). Evaluation of TFAM and FABP4 gene polymorphisms in three lines of Nellore cattle selected for growth. Genetics and Molecular Research. 9:2050-2059.
Beltinger C., Fulda S., Kammertoens T., Uckert A. and Debatin K. M. (2000). Mitochondrial Amplification of Death Signals Determines Thymidine Kinase. Ganciclovir-triggered Activation of Apoptosis. 60:3212-3217.
Botstein D., White R. L., Skolnick M. and Davis R. W. (1980). Construction of a genetic-linkage map using restriction fragment length polymorphisms. American Journal of Human Genetic. 32: 314-331.
Chan D. C., Ngo H. B. and Kaiser J. T. (2012). TFAM, a mitochondrial transcription and packaging factor, imposes a U-turn on mitochondrial DNA. Nature Structure Molecular Biology.18: 1290-1296.
Clayton D. A. (2000). Transcription and replication of mitochondrial DNA. Human Reproduction.15: 11-17.
Dimauro S. and Schon E. A. (2001). Mitochondrial DNA genetic pandoras. American Journal of Medical Science. 16: 103-116.
Fisher R. P. and Clayton D. A. (1988). Purification and characterization of human mitochondrial transcription factor 1. Molecular Cell Biology. 8: 3496-509.
Jiang Z., Kunej T., Michal J. J., Gaskins C. T., Reeves J. J., Busboom J. R., Dove P. and Wright-RW J. R. (2005). Significant associations of the mitochondrial transcription factor A promoter polymorphisms with marbling and subcutaneous fat depth in Wagyu x Limousin F2 crosses. Biochemical Biophysical Research Communication. 334: 516-523.
Jothi M. P. (2008). Genetic distance and phylogenic inference. Course notes, University of Putra, Malaysia.
Kaplanová K., Dvořák J. and Urban T. (2009). Association of single nucleotid polymorphisms in TG, LEP and TFAM genes with carcass traits cross-breed cattle. Biologie Zivacichu. 4: 647-651.
Kunej T., Wu X. L., Michal J. J., Berlic T. M. Jiang Z. and Dovc P. (2009). The Porcine Mitochondrial Transcription Factor a Gene: Molecular Characterization, Radiation Hybrid Mapping and Genetic Diversity among 12 Pig Breeds. American Journal of Animal and Veterinary Science. 7: 129-135.
SAS Institute Inc, Statistics.(System for Mixed Models. (2009). SAS Institute Inc., Cary. NC. USA. sasdof@wnt.sas.com.
Wilson D. E., Rouse G. H., Graser G. H. and Amim V. (1998). Prediction of carcass traits using live animal ultrasound. In: Beef Research Report. Amsterdam Iowa State University, 7: 1-7.
Woodward B. (2008). Polymorphisms in mitochondrial transcription factor A (“TFAM”) gene and their associations with carcass traits. Patent Application Publication. 56: 1-56.
Yeh F. C., Yang R. C. and Boyle T. (1999). Popgene version 1.31. Microsoft window-based freeware for population genetic analysis. University of Alberta and Centre for International Forestry Research. In Water Catchments Systems. 416-432 pp.