Document Type : Research Paper

Authors

1 MS.c of Animal Breeding, Department of Animal Science, University of Zabol

2 Assistant Professor of University of Zabol

3 Assistant Professor, Animal Breeding and Genetics, University of Zabol

Abstract

Fatty acid synthase (FASN), a multifunctional protein that carries out the synthesis of fatty acids, is coded by FASN gene which is known as major candied gene and plays a central role in de novo lipogenesis in mammals. This study was conducted to detect single nucleotide polymorphisms (SNPs) of the FASN gene and explore their relationships with three economically important traits including milk production (M), calving interval (CI) and conception rate (CR) in Holstein cows of Kerman province. The whole blood samples corresponding to the 38 Holstein cows with high and low estimate breeding values were collected. Genomic DNA was extracted from blood samples of the cows using a genomic DNA kit according to the manufacturer’s instructions. The genetic material was used for polymerase chain reaction amplification of selected gene fragments (750bp length from exon 37 to 39). All of PCR products were subsequently used directly for sequencing. Analysis of the target sequence followed by multiple regression of average allele substitution effects on M, CI, and CR traits revealed 58 SNP markers, among which 8 SNPs were totally associated with productive and reproductive traits. (M), (CI) and (CR) were affected by three (g.16593A>G, g.16670C>A and g.16776C>T), three (g.16524G,C,T>A, g.16830G,C,T>A, g.16833A,T>G) and two (g.16594A,C>G and g.16811A,T>G) SNPs respectively (P<0.05). Association between polymorphism in FASN gene and traits could be used as molecular markers for determination of animal's genetic potential as well as breeding strategies in Holstein population.

Keywords

بیگی نصیری، م.ت. ۱۳۸۳. بررسی قابلیت های ژنتیکی تولید شیر نژاد هلشتاین در شهرستان ساری. اولین کنگره علوم دامی و آبزیان کشور. ص. ۶۲۱-۶۲۳.
رضوی، س.م.، وطن خواه، م.، میرزایی، ح.ر. و رکوعی، م. ۱۳۸۶. برآورد روند ژنتیکی صفات تولیدی در گاوهای هلشتاین استان مرکزی. پژوهش و سازندگی، ۷۷: ۵۵-۶۲.
Bhuiyan, M. S. A., Yu, S. L., Jeon, J. T., Yoon, D., Cho, Y. M., Park, E. W. and Lee, J. H. )2009(. DNA polymorphisms in SREBF1 and FASN genes affect fatty acid composition in Korean cattle (Hanwoo). Asian-Australian Journal of Animal Science. 22: 765-773.
Caldow, G., Lowman, B. and, and Riddell, I. )2005(. Veterinary intervention in the reproductive management of beef cow herds. In Practice. 27(8): 406-411.
Chirala, S. S., Chang, H., Matzuk, M., Abu-Elheiga, L., Mao, J., Mahson, K., Finegold, M. and Wakil, S. J.(2003). Fatty acid synthesis is essential in embryonic development: Fatty acid synthase null mutants and most of the heterozygotes die in utero. Proction Natl Academy Science USA. 100: 6358-6363.
Ciecierska, D., Frost, A., Grzesiak, W., Proskura, W. S., Dybus, A. and Olszewski, A. (2013). The influence of fatty acid synthase polymorphism on milk production traits in Polish Holstein-Friesian cattle. The Journal of Animal and Plant Sciences. 23: 376-379.
Hall, T. A. (1999). BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series. 41: 95-98.
Lopez, H., Caraviello, D. Z., Satter, L. D., Fricke, P. M., Wiltbank, M. C. (2005). Relationship between level of milk production and multiple ovulations in lactating dairy cows. Journal of Dairy Science. 88: 2783–2793.
Morris, C. A., Cullen, N. G., Glass, B. C., Hyndman, D. L., Manley, T. R., Hickey, S. M., McEwan, J. C., Pitchford, W. S., Bottema, C. D. and Lee, M. A. (2007). Fatty acid synthase effects on bovine adipose fat and milk fat. Mammalian Genome. 18: 64–74
Oztabak, K., Gursel, F. E., Akis, I., Ates, A., Yardibi, H. and Turkay, G. (2014). FASN Gene Polymorphism in Indigenous Cattle Breeds of Turkey. Folica Biologica (Krakaw). 62: 29-35
Roy, R., Ordovas, L., Zaragoza, P., Romero, A., Moreno, C., Altarriba, J. and Rodellar, C. (2006). Association of polymorphisms in the bovine FASN gene with milk-fat content. Animal Genetics. 37(3): 215-218.
Schennink, A., Bovenhuis, H., Léon-Kloosterziel, K. M., van Arendonk, J. A. and Visker, M. H. (2009). Effect of polymorphisms in the FASN, OLR1, PPARGC1A, PRL and STAT5A genes on bovine milk-fat composition. Animal Genetic. 40: 909–916.
Singh, V. K., Mangalam, A. K. Dwivedi S. and Naik, S. (1998). Primer Premier: Program for design of degenerate primers from a protein sequence. BioTechniques. 24: 318-319.
Smith, S., Witkowski, A. and Joshi, A. K.(2003). Structural and functional organization of the animal fatty acid synthase. Prog Lipid Research. 42: 289–317.
Weigel, K. A. (2006). Prospects for improving reproductive performance through genetic selection. Animal Reproduction Science. 9(63): 323-330.
Yeon, S. H., Lee, S. H., Choi, B. H., Lee, H. J., Jang, G. W., Lee, K. T. and Chung, H. Y. (2013). Genetic variation of FASN is associated with fatty acid composition of Hanwoo. Meat Science. 94(1): 133-138
Zhang, S., Knight, T. J., Reecy J. M. and Beitz, D. C. (2008). DNA polymorphisms in bovine fatty acid synthase are associated with beef fatty acid composition. Animal Genetic. 39: 62-70.