Document Type : Research Paper

Authors

1 Sari Agricultural College, Mazandaran Technical University, Iran

2 Animal and Poultry Nutrition Faculty, Animal Science Faculty, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Golestan, Iran

3 Kerman

Abstract

The poultry industry is very important in terms of supplying a significant portion of the country's food and protein needs. In this research, the energy consumption of broiler chickens has been evaluated. For this purpose, information was collected from 45 broiler chicken producers randomly collected in Mazandaran province. In this study, energy consumption and energy indices were calculated first and then, using artificial neural network, output energy modeling was considered as a function. The results of this study showed that total input and output energy in broiler chicken meat production was 153.79 and 27.45 GJ per 1000, respectively. In broiler chickens, the highest inputs were consumed with 61.48%. The energy ratio in the production of this product was also calculated to be 0.18. The artificial neural network results showed that the best structure for estimating the energy consumption of broiler chicken meat was estimated to be 5-12-1. The coefficient of explanation for the best structure for broiler chicken production was 0.99 for training data. Therefore, this model was selected as the best method for estimating the output energy based on input energy in the study area. In assessing the effectiveness of inputs on the outputs, the fossil fuel showed the highest sensitivity among the production inputs that reveals the needs for revision of the energy resources more than ever.

Keywords

صداقت حسینی، م.، الماسی، م.، مینایی، س.، برقعی، م. (1387). طراحی سیستم بازیافت انرژی در مجتمع صنعتی تلید تخم مرغ. مجموعه مقالات پنجمین کنگره ملی مهندسی ماشین‌های کشاورزی. دانشگاه فردوسی مشهد.
لقمانپور زرینی ر. و اکرم ا. (1396). بررسی بهره‌وری انرژی در فرآیند تولید خیار گلخانه‌ای (مطالعه موردی: استان مازندران). کنفرانس ملی تولیدات زراعی و باغی. دانشگاه گنبد کاووس.
لقمانپور زرینی، ر. و نبی‌پور افروزی، ح. (1395). محاسبه و ارزیابی شاخص‌های انرژی و اقتصادی تولید کنجد در ایران (مطالعه موردی: استان مازندران). نشریه انرژی ایران. جلد 19، شماره 2، 102-93.
نقیب زاده، س.، جوادی، ا.، رحمتی، م.، مهران‌زاده، م. (1389). بررسی چگونگی سیر مصرف انرژی برای پرورش مرغ گوشتی در منطقه شمال خوزستان. ششمین کنگره ملی مهندسی ماشین‌های کشاورزی و مکانیزاسیون. پردیس کشاورزی و منابع طبیعی دانشگاه تهران (کرج).
Cochran, W. (1977). Sampling techniques. 3rd ed. New York: John Wiley and Sons.
Esengun, K. Erdal, G. Gunduz O. and Erdal, H. (2007). An economic analysis and energy use in stake-tomato production in Tokat province of Turkey. Renewable Energy. 32: 1873–1881.
Grzesiak, W. Błaszczyk, P. and Lacroix, R. (2006). Methods of predicting milk yield in dairy cows predictive capabilities of Wood’s lactation curve and artificial neural networks (ANNs). Computers and Electronics in Agriculture. 54: 69–83.
Hatirli, S. A. Ozkan, B. and Fert, C. (2005). An econometric analysis of energy input-output in Turkish agriculture. Renewable and Sustainable Energy Reviews. 9: 608–623.
Heidari, M. D. Omid, M. and Akram, A. (2011). Energy efficiency and econometric analysis of broiler production farms. Energy. 36: 6536–6541.
Kittle, A. P. (1993). Alternate Daily Cover Materials and Subtitle-the Selection Technique.  Rusmar Incorporated West Chester, PA.
Kizilaslan, H. (2009). Input-output energy analysis of cherries production in Tokat province of Turkey. Applied Energy. 86: 1354–1358.
Loghmanpour zarini, R., Yaghoubi, H. and Akram, A. (2013). Energy use in citrus production of Mazandaran Province in Iran, African Crop Science Journal. 21(1): 61-65.
Mesri-Gundoshmian, T. Ghassemzadeh, H. R. Abdollahpour, S. and Navid, H. (2010). Application of artificial neural network in prediction of the combine harvester performance. Journal of Food, Agriculture & Environment. 8(2): 721–724.
Nabavi-Pelesaraei, A. Fallah, A. and Hematian, A. (2013). Relation between energy inputs and yield of broiler production in Guilan province of Iran. The Second International Conference on Agriculture and Natural Resources. Kermanshah, Iran, 109–117.
Naderloo, L. Alimardani, R. Omid, M. Sarmadian, F. Jvadikia, P. Torabi, M. Y. and Alimardani, F. (2012). Application of ANFIS to predict crop yield based on different energy inputs. Measurement. 45: 1406–1413.
Pahlavan, R. Omid, M. and Akram, A. (2012). Energy input-output analysis and application of artificial neural networks for predicting greenhouse basil production. Energy. 37: 171–176.
Safa, M. and Samarasinghe, S. (2011). Determination and modelling of energy consumption in wheat production using neural networks: A case study in canterbury province, Newzealand. Energy. 36: 5140–5147.
Sefeedpari, P. (2012). Assessment and optimization of energy consumption in Dairy farm: Energy efficiency. Iranica Journal of Energy & Environment. 3(3): 213–224.
Zhao, Z. Chow, T. L. Rees, H. W. Yang, Q. Xing, Z. and Meng, F. R. (2009). Predict soil texture distributions using an artificial neural network model. Computers and Electronics in Agriculture. 65(1): 36–48.