The Effect of Different Levels of Glycine in Low Protein Finisher Diets on Performance, Carcass and Bone Characteristics, Immune System and Blood Parameters of Broiler Chickens

Document Type : Research Paper

Authors

1 Department of Animal Science, Urmia University

2 professor, Department of Animal Science, Faculty of Agriculture, University of Urmia‎

3 Islamic Azad University Isfahan Khorasgan Branch

Abstract

The purpose of this study was to investigate the effects of different levels of glycine in diluted protein diets on performance, carcass characteristics, internal organs, immune system, carcass nutrients, blood parameters and bone characteristics. Three hundred and sixty 24 days old male broilers (Hubbard strain) were used in a completely randomized design with 5 experimental group and 6 replicates (12 chicks per replicate). Experimental groups were the control diet and diluted diets containing 0, 0.05, 0.08 and 0.1% glycine during the finisher 1 (24-30 days) and finisher 2 (31 to 42 days) periods. Feed intake and weight gain were determined during the finisher 1 and 2 periods and used to calculate the feed conversion ratio. At the end of experiment (d 42), one chick from each replicate pen was selected and slaughtered for carcass characteristics and internal organ weights. Protein dilution had no effect on performance, carcass characteristics, internal organs, blood parameters, bone characteristics and carcass nutrients in broiler chicken but decreased the meat protein content (P <0.05). Furthermore, dietary protein dilution reduced the blood calcium content in broilers (P <0.05). Addition of 0.1% glycine to diluted diet increased the meat protein content and bone ash, but decreased the meat fat content, blood thyroxin hormone and blood urea contents (P <0.05). In general, the addition of glycine to diluted protein diets has no effect on the performance, carcass characteristics, and blood parameters but improves the meat quality by increasing the protein and decreasing the fat contents of meat.

Keywords


پوررضا، ج. و صادقی، غ. (1384). تغذیه جوجه‌­های گوشتی. انتشارات دانشگاه صنعتی اصفهان، کتاب اسکات (ترجمه)‌، ویرایش اول‌، ص 688.
دانشیار، م.، احمدآلی، ا. و عنایتی، د. (1393). افزودنی‌های خوراکی و محرک‌های رشد در تغذیه طیور. انتشارات آموزش و ترویج کشاورزی، 404 ص.
علی­پناه، ع.، دانشیار، م.، فرهومند، پ. و نجفی، غ. ر. (1398). تاثیر لیزین و بتائین جیره بر خصوصیات گوشت و استخوان جوجه­های گوشتی تحت آسیت القایی سرمایی. نشریه پژوهشهای علوم دامی ایران. شماره 11، ص 331-340.
Aftab, U., Ashraf, M. and Jiang, Z. (2006). Low protein diets for broilers. World’s Poultry Science Journal, 62: 688-701.
Azizi, K.; Daneshyar, M.; Abtahi, S. and Goldani, S.H. (2017). Performance, carcass characteristics and immune response of Japanese quails to different levels of Mentha piperita L. powder. Iran Journal of Medicinal Aromatic Plants, 33: 820-836.
Azizi, B., Sadeghi, G., Karimi, A. and Abed, F. (2011). Effects of dietary energy and protein dilution and time of feed replacement from starter to grower on broiler chickens performance. Journal of Central Europen Agriculture, 12: 44-52.
Aviagen Co. (2018). Ross Broiler Management Book.
Baker, D. H. and Sugahara, M. (1970). Nutritional investigation of the metabolism of glycine and its precursors by chicks fed a crystalline amino acid diet. Journal Poultry Science, 49:756–760.
Buyse, J., Darras, V. M., Vleuricku, L., Kühn, E.R. and Decuypere, E. (2001). Nutritional regulation of the somatotrophic axis and intermediary metabolism in the chicken. In: Avian Endocrinology. Eds. Dawson A. and Chaturvedi C. M., New Dehli India. pp, 33-313.
Coto, C., Wang, Z., Cerrate, S., Perazzo, F., Abdel-Maksoud, A., Yan, F. and Waldroup, P. W. (2009). Effect of protein and amino acid levels on bone formation in diets varying in calcium content. International Journal Poultry Science, 8: 307-316.
Daneshyar, M., Kermanshahi, H. and Golian, A. (2009). Changes of biochemical parameters and enzyme activities in broiler chickens with cold-induced ascites. Journal Poultry Science, 88: 106-110.
Danicke, S., Bottcher, W., Jeroch, H., Thielebein, J. and Simon, O. (2000). Replacement of soybean oil with tallow in rye-based diets without xylanase increases protein synthesis in small intestine of broilers. Journal Nutrition; 130: 827-834.
Dean, D. W., Bidner, T. D. and Southern, L. L. (2006) .Glycine supplementation to low protein, amino acid-supple- mented diets supports optimal performance of broiler chicks. Journal Poultry Science, 85: 288-296.
Eklund, M., Bauer, E., Wamatu, J. and Mosenthin, R. (2005). Potential nutritional and physiological functions of betaine in livestock. Nutrition Research Review, 18: 31-48.
Feng, J., Ma ,W. Q., Niu, H. H., Wu ,X. M., Wang, Y. and Feng, J. (2011). Effects of zinc glycine chelate on growth, hematological and immunological characteristics in broilers. Biologica Trace Element Research, 133: 431-439.
Han,Y. and Baker, D. H. (1993). Effects of excess methionine or lysine for broilers fed a corn-soybean meal diet.  Journal Poultry Science, 72: 1070-1074.
Hassan, H., Musa, H., Chen, J., Cheng, G. H. and Yousif, M. (2007). Relation between abdominal fat and serum cholesterol, triglycerides and lipoprotein concentrations in chicken breeds. Turkish Journal Veterinary Animal Science, 31: 375-379.
Hofmann, A. F., Hagey, L. R. and Krasowski, M. D. (2010). Bile salts of vertebrates: structural variation and possible evolutionary significance. Journal Lipid Research, 51: 226-246.
Holsheimer, J. P., Vereijken, P. F. G. and Shutte, J. B. (1994). Response of broiler chicks to threonine supplemented diets to 4 weeks of age. British Journal Poultry Science, 35: 551-562.
Hutchins, M. O. and Newcomber, W. S. (1966). Metabolism and excretion of thyroxine and triiodothyronine in chickens. General. Comp. Endocrinology, 6: 239-248.
Jackson, S., Summers, J. D. and Lesson, S. (1982). Effect of dietary protein and energy on broiler carcass and efficiency of nutrition utilization. Journal Poultry Science, 61: 2224- 2231.
Kidd, M. T. and Kerr, B. J. (1996). L-threonine for poultry: a Review. Journal Applied Poultry Research, 5: 358-367.
Kim, H. J., Kim, H. J., Jeon, J. J., Nam, K. C., Shim, K. S., Jung, J. H., Kim, K. S., Choi, Y., Kim, S. H. and Jang, A. (2020). Comparison of the quality characteristics of chicken breast meat from conventional and animal welfare farms under refrigerated storage. Poultry Science, 99: 1788-1796.
Ko, Y. H., Yang, H.Y. and Jang, I. S. (2004): Effect of conjugated linoleic acid on intestinal and hepatic antioxidant enzyme activity and lipid peroxidation in broiler chickens. Asian Australasian Journal Animal Science, 17, 1162-1167.
Leeson, S. and Summers, J. D. (1985). Broiler carcass composition as affected by amino acid supplementation. Canadian Journal Animal Science, 65: 717-723.
Lemme, A., Hiller, P., Klahsen, M., Taube, V., Stegemann, J. and Simon, I. (2019). Reduction of dietary protein in broiler diets not only reduces n-emissions but is also accompanied by several further benefits. Journal of Applied Poultry Research, 28: 867-880.
Macleod, M. G. (1997). Effects of amino acid balance and energy protein ratio on energy and nitrogen metabolism in male broiler chickens. British Journal Poultry Science, 38: 405-411.
March, B. E., Biely, J. and Pastro, K. R. (1964). The effect of protein level and amino acid balance upon thyroid activity in the chick. Canadian Journal Biochemical, 42: 341-344.
Moran, E. T. Jr. and Stillborn, H. L. (1996). Effect of  glutamic acid on broilers given sub marginal crude protein with ad equate essential amino acids using feeds high and low in potassium. Journal Poultry Science, 75: 120-129.
Susan, W. E. and Waldroup, P. W. (1995). Utilization of high protein cottonseed meal in broiler diets. Journal of Applied Poultry Research, 4: 310-318.
Munns, P. L. and Lamont, S. J. (1991). Research note: Effects age and Immunization interval on the immunity response T-cell dependent and T-cell independent antigens in chickens. Journa Poultery Science, 70: 2371-2374.
Namroud, N. F., Shivazad, M. and Zaghari, M. (2008). Effects of fortifying low crude protein diet with crystalline amino acids on performance, blood ammonia level, and excreta characteristics of broiler chicks.  Journal Poultry Science, 87: 2250-2258.
NRC. (1994). Nutrient Requirement of Poultry. (9th ed). National Academy Press Washington, D. C. USA.
Ospina-Rojas, I. C., Murakami, A. E., Moreira, I., Picoli, K. P., Rodrigueiro, R. J. B. and Furlan, A. C. (2013). Dietary glycine + serine responses of male broilers fed low-protein diets with different levels of threonine. British Journal Poultry Science, 54: 486-493.
Ospina-Rojas, I. C., Murakami, A. E., Duarte, C. R. A., Eyng, C., Oliveira, C. A. L. and Janeiro, V. (2014). Valine, isoleucine, arginine and glycine supplementation of low-protein diets for broiler chickens during the starter and grower phases. British Poultry Science, 55: 766-773.
Parr, J. F. and Summers, J. D. (1991). The effect of minimizing amino acid excesses in broiler diets. Journal Poultry Science, 70: 15400-15499.
Patterson, R. E., Gail, A., Laughlin, A. Z., La Croix, S. J., Hartman, L. N., Carolyn, M. S., María, E., Martínez and A., Villasenor. (August 2015) “Intermittent fasting and human metabolic health. Journal of the Academy of Nutrition and Dietetics, 115: 1203-1212.
Refetoff, S., Robin, N. I. and Fang, V. S. (1970). Parameters of thyroid function in serum of 16 selected vertebrate species: A study of PBI, serum T4, free T4, and the pattern of T4 and T3 binding to proteins. Endocrinology, 86: 793-805.
SAS I. (2002). SAS users guide. Release 9.1. SAS Institute Inc, Cary, NC. USA.
Scott, R. L. and Austic, R.E. (1978). Influence of dietary potassium on lysine metabolism in the chick .Journal of Nutrition, 108:137-144.
Si, J., Fritts, C. A., Waldroup, P. W. and Burnham, D. J. (2004). Effects of tryptophan to large neutral amino acid ratios and overall amino acid levels on utilization of diets low in crude protein by broilers. Journal of Applied Poultry Research, 13: 570-5788.
Sohail, S., Bryant, S. M. M. and Roland, D. A. (2003). The effect of glycine supplementation on performance of broilers fed sub-marginal protein with adequate synthetic methionine and lysine. Journal Poultry Science, 2: 394-397.
Siegel, P. B. and Gross, W. B. (1980). Production and persistency of antibodies in chickens to sheep erythrocytes. 1. Directional selection. Poultry Science, 59: 1-5.
Swatson, H. K., Gous, R. M. and Iji, P. A. (2000). Biological performance and gastrointestinal development of broiler chicks fed diets varying in energy: protein ratios. Southern African Journal Animal Science, 30: 136-137.
Takahashi, K., Aoki, A., Takimoto, T. and Akiba, Y. (2008). Dietary supplementation of glycine modulates inflammatory response indicators in broiler chickens. British Journal of Nutrition, 100: 1019-1028.
Velamen, S. G. (2000). The role of the extracellular matrix in skeletal development. Journal of Poultry Science, 79: 985-989.
Waguespack, A. M., Powell, S., Binder, T. D., Payne, R. L. and Southern, L. L. (2009). Effect of incremental levels of l-lysine and determination of the limiting amino acids in low crude protein corn-soybean meal diets for broilers. Journal of Poultry Science, 88: 1216-1226.
Xue, G. D., Wu, S. B., Choct, M. and Swick, R. A. (2017). The role of supplemental glycine in establishing a subclinical necrotic enteritis challenge model in broiler chickens. Animal Nutrition, 3: 266-270.
Yamazaki, M., Murakami, H., Nakashima, K., Abe, H. and Takoma, S. M. (2006). Effect of excess essential amino acids in low protein diet on abdominal fat deposition and nitrogen excretion of the broiler chicks. Journal of Poultry Science, 43: 150-155.