Document Type : Research Paper

Authors

Gorgan University of Agricultural Sciences and Natural Resources

Abstract

this study was conducted to investigate effect of milk enrichment with manganese supplement in organic and inorganic forms on performance, digestibility, skeletal growth indices, fecal consistency and hematology of suckling calves. 24 newborn calves were randomly divided into 3 groups with 8 replications. Experimental treatments include: 1) control group (without manganese supplementation), 2) Adding mineral manganese supplement to milk consumption and 3) Adding organic manganese supplements to milk consumption. Calves were weighed and measured every 21 days to determine performance and skeletal growth indices. Daily feed intake and post-feeding amount were measured and three days a week, the feces of the calves were randomly evaluated. The results showed that the enrichment of milk with manganese supplements in organic and inorganic forms caused weight gain in the whole period, daily weight gain and dry matter consumption. Calves that receiving milk with organic and inorganic manganese supplements had better digestibility of dry matter. Enrichment of milk with supplements in organic and inorganic forms had no effect on skeletal growth indices. The greatest improvement in fecal consistency was related to the group receiving organic manganese and then mineral manganese. An increase in hemoglobin, hematocrit and white blood cells was observed in the treatments receiving organic and inorganic manganese, and the highest amount of red blood cells was related to the treatment receiving milk with organic manganese. In general, it can be concluded that adding 30 mg of organic manganese to milk results in better performance and health of calves.

Keywords

Main Subjects

اسدی، م.، توغدری، ع.،  قورچی، ت. و حاتمی، م. (1402). تأثیر مکمل منگنز آلی بر تغییرات وزن، قابلیت‌هضم، تولید و ترکیبات شیر میش‌های افشاری در دوره انتقال و وضعیت سلامت بره‌های آنها. تحقیقات تولیدات دامی، 12(1): 12-1. https://doi.org/10.22124/ar.2023.23808.1752
اسدی، م.، توغدری، ع. و قورچی، ت. (1397). تأثیر سلنیوم و ویتامین E خوراکی و تزریقی بر عملکرد، فراسنجه‌های خونی و قابلیت هضم مواد مغذی در بره‌های شیرخوار نژاد دالاق. پژوهش‌های تولیدات دامی، ۹ (۲۰): 87-79. http://dx.doi.org/10.29252/rap.9.20.79
اسدی، م.، قورچی، ت.، توغدری، ع.، رجبی علی آبادی، ر.، ایری توماج، ر. و صحنه، م. (1400). مقایسه مقدار سلنیوم و ویتامین E توصیه شده در NRC و ARC به دو روش خوراکی و تزریقی بر عملکرد، قابلیت‌هضم، برخی از متابولیت‌های خونی و شاخص‌های رشد اسکلتی گوساله‌های شیر خوار هلشتاین. پژوهش‌های علوم دامی (دانش کشاورزی)، 31(2): 69-57. https://doi.org/10.22034/as.2021.36647.1526
دلیر، ش.، محمدزاده، ح.، تقی زاده، الف. و پایا، ح. (1399). تاثیر مکمل شیر روماک اکسترا بر عملکرد و رفتارهای تغذیه‌ای و غیر تغذیه‌ای گوساله‌های شیرخوار هلشتاین. نشریه پژوهش‌ در نشخوار کنندگان، 8(1): 45-38. https://doi.org/10.22069/ejrr.2020.17310.1716
علی عربی، ح.، علیمحمدی، ر.، بهاری، ع.الف. و زمانی، پ. (1393). اثر منابع مختلف مکمل سلنیوم بر رشد، فراسنجه های هماتولوژی و شکمبه در بره های پرواری مهربان. نشریه پژوهش‌ در نشخوار کنندگان، 2(3): 68-51.
کسیانی،  ع.ر.، رضا یزدی، ک. و ژندی، م. (1400). اثرات جایگزینی فرم غیرآلی منگنز، روی، مس و سلنیوم با منبع آلی آنها بر عملکرد رشد گوساله‌های شیرخوار نژاد هلشتاین. نشریه پژوهش‌ در نشخوار کنندگان، 9(1): 68-55. https://doi.org/10.22069/ejrr.2020.18424.1764
مؤذنی‌زاده، م.ح.، توحیدی، آ.،  ژندی، م. و رضا یزدی، ک. (1402). تاثیر مکمل‌سازی برخی عناصر کم‌نیاز بر عملکرد رشد، فراسنجه‌های بیوشیمیایی، آنزیمی، آنتی-اکسیدانی، هورمونی و خون‌شناسی گوساله‌های شیرخوار هلشتاین. نشریه پژوهش‌ در نشخوار کنندگان، 11(1): 92-75. https://doi.org/10.22069/ejrr.2022.20590.1863
AOAC. )2000(. Official Methods of Analysis. Association of Official Analytical Chemist, 17th edition, Arlington, USA.
Arthington, J.D. and Havenga, L.J. (2012). Effect of injectable trace minerals on the humoral immune response to multivalent vaccine administration in Journal of Animal Science beef calves., 90(6): 1966-1971 https://doi.org/10.2527/jas.2011-4024
Asadi, M., Toghdory, A., Ghoorchi, T. and Hatami, M. (2024). The effect of maternal organic manganese supplementation on performance, immunological status, blood biochemical and antioxidant status of Afshari ewes and their newborn lambs in transition period. Journal of Animal Physiology and Animal Nutrition, 108: 493–499. https://doi.org/10.1111/jpn.13909
Asadi, M., Toghdory, A., Hatami, M. and Ghassemi Nejad, J. (2022). Milk Supplemented with Organic Iron Improves Performance, Blood Hematology, Iron Metabolism Parameters, Biochemical and Immunological Parameters in Suckling Dalagh Lambs. Animals. 12, 510. https://doi.org/10.3390/ani12040510
Baruthio, F., Guillard, O., Arnaud, J., Pierre, F. and Zawislak, R. (1988). Determination of manganese in biological materials by electrothermal atomic absorption spectrometry: A review. Clininical Chemistry, 34: 227–234. https://doi.org/10.1093/clinchem/34.2.227
Biswas, P.K. (2004). Studies on supplemental organic and inorganic trace minerals and exogenous phytase on reproductive and productive performances of anoestrous cattle (Doctoral dissertation, Kolkata).
Case, A.J., Madsen, J.M., Motto, D.G., Meyerholz, D.K. and Domann, F.E. (2013). Manganese superoxide dismutase depletion in murine hematopoietic stem cells perturbs iron homeostasis, globin switching, and epigenetic control in erythrocyte precursorcells. Free Radical and Biology Medicine, 56: 17–27. https://doi.org/10.1016/j.freeradbiomed.2012.11.018
El Ashry, G.M., Hassan, A.A. and Soliman, S.M. (2012). Effect of Feeding a Combination of Zinc, Manganese and Copper Methionine Chelates of Early Lactation High Producing Dairy Cow. Food Nutrient Science, 3: 1084–1091. http://dx.doi.org/10.4236/fns.2012.38144
Ferreira, L.S., Bittar, C.M.M., Silva, J.T., Soares, M.C., Oltramari, C.E., Nápoles, G.G.O. and Paula, M.R. (2013). Performance and plasma metabolites of dairy calves fed a milk replacer or colostrum silage. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 65: 1357-1366. https://doi.org/10.1590/S0102-09352013000500013
Genther, O.N. and Hansen, S.L. (2015). The effect of trace mineral source and concentration on ruminal digestion and mineral solubility. Journal of Dairy Science, 98(1): 566-573 https://doi.org/10.3168/jds.2014-8624
George, M.H., Nockels, C.F., Stanton, T.L., Johnson, B., Cole, N.A. and Brown, M.A. (1997). Effect of source and amount of zinc, copper, manganese, and cobalt fed to stressed heifers on feedlot performance and immune function. The Professional Animal Scientist, 13: 84–89. https://doi.org/10.15232/S1080-7446(15)31850-7
Ghosh, S., Mehla, R.K., Sirohi, S.K. and Tomar, S.K. (2011). Performance of crossbred calves with dietary supplementation of garlic extract. Animal phisiology and Animal Nutrition, 95: 449-455. https://doi.org/10.1111/j.1439-0396.2010.01071.x
Gresakova, L., Venglovska, K. and Cobanova, K. (2018). Nutrient digestibility in lambs supplemented with different dietary manganese sources. Livestock Science, 214: 282-287. https://doi.org/10.1016/j.livsci.2018.07.001
Hansen, S.L., Spears, J.W., Lloyd, K.E., and Whisnant, C.S. (2006). Growth, reproductive performance, and manganese status of heifers fed varying concentrations of manganese. Journal of Animal Science, 84(12): 3375-3380. https://doi.org/10.2527/jas.2005-667
Huerta, M., Kincaid, R.L., Cronrath, J.D., Busboom, J., Johnson, A.B. and Swenson, C.K. (2002). Interaction of dietary zinc and growth implants on weight gain, carcass traits and zinc in tissues of growing beef steers and heifers. Animal Feed Science and Technology, 95(1-2): 15-32. https://doi.org/10.1016/S0377-8401(01)00334-0
Isler, M., Delibas, N., Guclu, M., Gultekin, F., Sutcu, R., Bahceci, M. and Kosar, A. (2002). Superoxide dismutase and glutathione peroxidase in erythrocytes of patients with iron deficiency anemia: Effects of different treatment modalities. Croatian Medical Journal, 43: 16–19.
Ivan, M. and Hidiroglou, M. (1980). Effect of dietary manganese on growth and manganese metabolism in sheep. Journal of Dairy Science, 63: 385–390. https://doi.org/10.3168/jds.S0022-0302(80)82944-4
Ji, H., Tan, D., Chen, Y., Cheng, Z., Zhao, J. and Lin, M. (2023). Effects of different manganese sources on nutrient digestibility, fecal bacterial community, and mineral excretion of weaning dairy calves. Front. Microbiology, 14:1163468. https://doi.org/10.3389/fmicb.2023.1163468
Khan, M.A., Lee, H.J., Lee, W.S., Kim, H.S., Kim, S.B., Ki, K.S., Park, S.J., Ha, J.K., & Choi, Y.J. 2007. Starch source evaluation in calf starter: I. Feed consumption, body weight gain, structural growth, and blood metabolites in Holstein calves. Journal of Dairy Science. 90(11): 5259-5268. https://doi.org/10.3168/jds.2007-0338
Lu, H., Wu, W., Zhao, X., Abbas, MW., Liu, S., Hao, L. and Xue, Y. (2023). Effects of Diets Containing Different Levels of Copper, Manganese, and Iodine on Rumen Fermentation, Blood Parameters, and Growth Performance of Yaks. Animals (Basel), 13(16):2651. https://doi.org/10.3390/ani13162651
Lyford, S. J., & J. T. Huber. 1988. Digestion, Metabolism and nutrient needs in pre-ruminants. Pg. 416 in the Ruminant Animal: Digestive Physiology and Nutrition, D. C. Church, ed. Prospect Heights, IL: Waveland Press, Inc.
Makov´a, Z., Faixov´a, Z., Tarabov´a, L., Pieˇsov´a, E., Venglovsk´a, K., ˇCobanov´a, K., Greˇs´akov´a, L. and Faix, S. (2019). Effects of different dietary manganese sources on thickness of mucus layer and selected biochemical and haematological indicators in sheep. Acta Veterinaria Brno, 87: 351–356. https://doi.org/10.2754/avb201887040351
Marcondes, M.I. and Silva, A.L. (2021). Determination of energy and protein requirements of preweaned dairy calves: A multistudy approach. Journal of Dairy Science, 104(11): 11553-11566.‏ https://doi.org/10.3168/jds.2021-20272
Matés, J.M., Pérez‐Gómez, C. and De Castro, I.N. (1999). Antioxidant enzymes and human diseases. Clinical Biochemistry, 32: 595–603. https://doi.org/10.1016/s0009-9120(99)00075-2
McDowell, L.R. (2003). Minerals in Animal and Human Nutrition (2nd Ed.). Netherlands: Elsevier Science B. V., Amsterdam.
Patra, A. and Lalhriatpuii, M. (2020). Progress and prospect of essential mineral nanoparticles in poultry nutrition and feeding—a review. Biological trace element research, 197(1): 233-253. https://doi.org/10.1007/s12011-019-01959-1
Ryan, A.W., Kegley, E.B., Hawley, J., Powell, J.G., Hornsby, J.A., Reynolds, J.L. and Laudert, S.B. (2015). Supplemental trace minerals (zinc, copper, and manganese) as sulfates, organic amino acid complexes, or hydroxy trace-mineral sources for shipping-stressed calves. The Professional Animal Scientist, 31(4): 333-341. https://doi.org/10.15232%2Fpas.2014-01383
Santos, F.H.R., De Paula, M.R., Lezier, D., Silva, J.T., Santos, G. and Bittar, C.M.M. (2015). Essential oils for dairy calves: effects on performance, scours, rumen fermentation and intestinal fauna. Animal, 9(6): 958-965.‏ https://doi.org/10.1017/S175173111500018X
Siciliano-Jones, J.L., Socha, M.T., Tomlinson, D.J. and DeFrain, J.M. (2008). Effect of trace mineral source on lactation performance, claw integrity, and fertility of dairy cattle. Journal of Dairy Science, 91(5): 1985-1995. https://doi.org/10.3168/jds.2007-0779
Slanzon, G.S., Toledo, A.F., Silva, A.P., Coelho, M.G., da Silva, M.D., Cezar, A.M. and Bittar, C.M.M. (2019). Red propolis as an additive for preweaned dairy calves: Effect on growth performance, health, and selected blood parameters. Journal of Dairy Science, 102(10): 8952-8962. https://doi.org/10.3168/jds.2019-16646
Teixeira, A.G.V., Lima, F.S., Bicalho, M.L.S., Kussler, A., Lima, S.F., Felippe, M.J. and Bicalho, R.C. (2014). Effect of an injectable trace mineral supplement containing selenium, copper, zinc, and manganese on immunity, health, and growth of dairy calves. Journal of Dairy Science, 97(7): 4216-4226. https://doi.org/10.3168/jds.2013-7625
Tiwari, S.P., Jain, R.K., Mishra, U.K., Misra, O.P., Patel, J.R. and Rajagopal, S. (2000). Effect of trace mineral (mineral capsules) supplementation on nutrient utilization and rumen fermentation pattern in Sahiwal cow (Bos indicus). Indian Journal of Animal Science, 70: 504-507.
Toghdory, A., Asadi, M., Ghoorchi, T. and Hatami, M. (2023). Impacts of organic manganese supplementation on blood mineral, biochemical, and hematology in Afshari Ewes and their newborn lambs in the transition period. Journal of Trace Elements in Medicine and Biology, 79, 127215. https://doi.org/10.1016/j.jtemb.2023.127215
Tufarelli, V., and Laudadio, V. (2017). Manganese and its role in poultry nutrition: an overview. Journal of Experimental Biology and Agricultural Sciences, 5(6): 749-754. http://dx.doi.org/10.18006/2017.5(6).749.754
Underwood, E.J. and Suttle, N.F. 1999. The Mineral Nutrition of Livestock (3th ed).
Van Keulen, V., and Young, B.H. (1977). Evaluation of acid-insoluble ash as natural marker in ruminant digestibility studies. Journal of Animal Science, 26: 119-135.
Van Soest, P.J. 1994. Nutritional Ecology of the Ruminants. Cornell University Press, Ithaca, New York.
Vedovatto, M., Moriel, P., Cooke, R.F., Costa, D.S., Faria, F.J.C., Neto, I.M.C. and Franco, G.L. (2019). Effects of a single trace mineral injection on body parameters, ovarian structures, pregnancy rate and components of the innate immune system of grazing Nellore cows synchronized to a fixed-time AI protocol. Livestock Science, 225: 123-128. https://doi.org/10.1016/j.anireprosci.2019.106234
Weiss, W.P. and Socha, M.T. (2005). Dietary manganese for dry and lactating holstein cows. Journal of Dairy Science, 88: 2517–2523. https://doi.org/10.3168/jds.S0022-0302(05)72929-5
Yadav, P., Choudhary, S., Kaushik, P.K., Choudhary, S.D., Yadav, M.K., Meel, S. and Godara, R.S. (2017). Effect of supplementation of trace minerals on hematological parameters and plasma mineral profile of Gir calves. Veterinary Practitioner, 18: 293–296.
Yamamoto, S., Ito, K., Suzuki, K., Matsushima, Y., Watanabe, I., Watanabe, Y., Abiko, K., Kamada, T. and Sato, K. (2014). Kinematic gait analysis and lactation performance in dairy cows fed a diet supplemented with zinc, manganese, copper and cobalt. Journal of Animal Science, 85(3): 330-335. https://doi.org/10.1111/asj.12141