Document Type : Research Paper

Authors

Gorgan University of Agricultural Sciences and Natural Resources

10.22092/asj.2025.367634.2438

Abstract

In order to evaluate of the effect of feeding milk enriched of inorganic, organic and chromium nanoparticles supplements on performance, digestibility of nutrients, nutritional behaviors and microbial protein synthesis of Holstein Suckling calves under heat stress conditions, 32 calves with average weight 37± 3 kg in a complete design were randomly selected with 8 replications and 4 treatments. Experimental treatments include milk without chromium supplement (control), milk containing 3 mg of chromium in mineral form per day, milk containing 3 mg of chromium in the form of chromium-methionine per day and milk contained 3 mg of chromium in the form of chromium nanoparticles per day. The results showed that milk enrichment with chromium nanoparticles increased final weight, daily weight gain, dry matter intake and skeletal growth indices and decreased feed conversion ratio. Fecal consistency, number of animals with diarrhea and days of diarrhea in calves consuming different forms of chromium decreased compared to the control group. Treatments receiving chromium nanoparticles showed higher red blood cell and hemoglobin levels than other treatments. Immunoglobulin G and immunoglobulin M were affected by the experimental treatments, such that the treatment receiving chromium nanoparticles showed the highest levels compared to other treatments, and the lowest level of immunoglobulin was specific to the control group. In general, the use of chromium, especially in the forms of chromium-methionine and chromium nanoparticles, is recommended in calves affected by heat stress.

Keywords

Main Subjects

اسدی، م.، قورچی، ت.، توغدری، ع.، رجبی علی آبادی، ر.، ایری توماج، ر. و صحنه، م. (1400). مقایسه مقدار سلنیوم و ویتامین E توصیه شده در NRC و ARC به دو روش خوراکی و تزریقی بر عملکرد، قابلیت‌هضم، برخی از متابولیت‌های خونی و شاخص‌های رشد اسکلتی گوساله‌های شیر خوار هلشتاین. پژوهش‌های علوم دامی (دانش کشاورزی)، 31(2): 69-57. https://doi.org/10.22034/as.2021.36647.1526
اسدی، م.، قورچی، ت. و توغدری، ع. (1403). اثر شکل‌های مختلف کروم بر مصرف خوراک، فراسنجه‌‫های شکمبه‌ای و متابولیت‫های خونی میش‌های افشاری طی دوره انتقال و بره‌های آنها در شرایط تنش گرمایی. تحقیقات تولیدات دامی، 13(1): 29-47.
اسدی، م.، قورچی، ت. و توغدری، ع. (1403). اثر شکل‌های مختلف کروم بر تغییرات وزنی و آزمون تحمل گلوکز و انسولین میش‌های افشار در دوره انتقال تحت تأثیر تنش گرمایی. تولیدات دامی، 26(1): 33-44.
اسدی، م.، قورچی، ت. و توغدری، ع. (1403). تأثیر استفاده از شکل‌های مختلف کروم بر فراسنجه‌‫های هماتولوژی و وضعیت آنتی‌اکسیدانی میش‌های افشار در دوره‌ی انتقال و بره‌های آن‌ها تحت تأثیر تنش گرمایی. علوم دامی ایران، 55(3): 547-563.
سیف زاده، ص.، سیف دواتی، ج.، صحرایی، م.، رزم آذر، و. و بهکش نوشهری، ف. (1399). بررسی اثرات کروم -متیونین بر عملکرد رشد، فراسنجه‌های خونی و سلامت گوساله‌های شیرخوار هلشتاین تحت استرس گرمایی. نشریه پژوهش‌ در نشخوارکنندگان، 8(2): 109-124. https:// doi: 10.22069/ejrr.2020.17667.1735
سیفعلی نسب، ا.، موسائی، ا.، ستایی مختاری، م. و دوماری، ح. (1398) . تاثیر مکمل آلی کروم بر عملکرد رشد، قابلیت هضم مواد  مغذی، برخی فراسنجه‌های تخمیری شکمبه و متابولیت‌های خون در بره‌های پرواری. پژوهش‌های تولیدات دامی، 10 (2 ): 74-65. http://dx.doi.org/10.29252/rap.10.23.65
رمضانی، م.، سیف دواتی، ج.، سیف زاده، ص.، عبدی بنمار، ح. و رزم آذر، و. (1397). اثرات اسید لینولئیک مزدوج و ویتامین C بر عملکرد رشد، غلظت برخی متابولیت‌ها و شمارش سلول‌های خونی گوساله‌های شیرخوار هلشتاین. نشریه پژوهش‌ در نشخوار کنندگان، 6(2): 101-116. https:// doi: 10.22069/ejrr.2018.14986.1634
عبدالهی، م.، رضائی، ج. و فضائلی، ح. (1398). تأثیر  منابع روی بر پروتئین میکروبی، ایمنوگلوبولین‌ها (M و A)، و فراسنجه‌های نیتروژنی خون گوساله‌های هلشتاین. نشریه پژوهش‌ در نشخوار کنندگان، 7(2): 17-32. https:// doi: 10.22069/ejrr.2019.16018.1669
Abdelnour, S. A., Abd El-Hack, M. E., Khafaga, A. F., Arif, M., Taha, A. E., and Noreldin, A. E. (2019). Stress biomarkers and proteomics alteration to thermal stress in ruminants: A review. Journal of thermal biology, 79, 120-134 https://doi.org/10.1016/j.jtherbio.2018.12.013.
Arthington, J. D., Corah, L. R., Minton, J. E., Elsasser, T. H. and Blecha, F. (1997). Supplemental dietary chromium does not influence ACTH, cortisol, or immune responses in young calves inoculated with bovine herpesvirus-1. Journal of animal science. 75(1): 217-223.‏ . https://doi.org/10.2527/1997.751217x.
Alfano, F. R. D. A. and Palella BI Riccio, G. (2011). Thermal environment assessment reliability using temperature-humidity indices. Industrial Health. 49(1): 95-106. https://doi.org/ 10.2486/indhealth.ms1097.
Bell, A. W., Greenwood, P. L. and Ehrhardt, R. A. 2005. Regulation of metabolism and growth during prenatal growth. In: D. G. Burrin and H. J. Mersmann (ed.) Biology of Metabolism in Growing Animals. Elsevier Limited, Edinburgh, U.K.
Bernhard, B. C., Burdick, N. C., Rounds, W., Rathmann, R. J., Carroll, J. A., Finck, D. N. and Johnson, B. J. (2012). Chromium supplementation alters the performance and health of feedlot cattle during the receiving period and enhances their metabolic response to a lipopolysaccharide challenge. Journal of Animal Science. 90(11): 3879-3888 https://doi.org/10.2527/jas.2011-4981.
Besong, S., Jackson, J. A., Trammell, D. S. and Akay, V. (2001). Influence of supplemental chromium on concentrations of liver triglyceride, blood metabolites and rumen VFA profile in steers fed a moderately high fat diet. Journal of Dairy Science. 84: 1679-1685. https://doi.org/10.3168/jds.S0022-0302(01)74603-6 .
Besong, S., Jackson, J.A., Trammell, D.S. and Akay, V. (2001). Influence of supplemental chromium on concentrations of liver triglyceride, blood metabolites and rumen VFA profile in steers fed a moderately high fat diet. Journal of Dairy Science, 84: 1679-1685. https://doi.org/ 10.3168/jds.S0022-0302(01)74603-6.
Bhattacharya, A, Rahman, M. M., Mccarter, R., OíShea, M.and Fernandes, G. (2006). Conjugated linoleic acid and chromium lower body weight and visceral fat mass in high-fat-diet-fed mice Lipids. 41: 437-444. https://doi.org/ 10.1007/s11745-006-5117-3.
Broucek, J., Kisac, P., Uhrincat, M., Hanus, A. and Benc, F. (2008). Effect of high temperature on growth performance of calves maintained in outdoor hutches. Journal of Animal Feed Science and Technology, 17: 139–146. https://doi:10.22358/jafs/66477/2008.
Bunting, L., Fernandez, J., Thompson, D. and Southern, L. (1994). Influence of chromium picolinate on glucose usage and metabolic criteria in growing Holstein calves. Journal of Animal Science. 72(6): 1591-1599. https://doi.org/10.2527/1994.7261591x.
Deka RS (2013) Effect of chromium supplementation on immuneendocrine parameters, nutrient utilization and productive performance in lactating buffaloes. Ph.D. thesis submitted to National Dairy Research Institute, Karnal, Haryana, India. https://doi.org/10.3168/jds.S0022-0302(01)74583-3
Dikeman, M.E. (2007). Effects of metabolic modifiers on carcass traits and meat quality. Journal of Meat Science, 77: 121-135. https://doi.org/ 10.1016/j.meatsci.2007.04.011
Domínguez-Vara, I.A., González-Muñoz, S.S., Pinos-Rodríguez, J.M., Bórquez-Gastelum, J.L., Bárcena-Gama, R., Mendoza-Martínez, G., Zapata, L.E. and Landois-Palencia, L.L. (2009). Effect of feeding selenium-yeast and chromium-yeast to finishing lambs on growth, carcass characteristics, and blood hormones and metabolites. Journal of Animal Feed Science and Technology, 152: 42 49. https://doi.org/10.1016/j.anifeedsci.2009.03.008.
Dębski, B., Zalewski, W., Gralak, M. A. and Kosla, T. (2004). Chromium-yeast supplementation of chicken broilers in an industrial farming system. Journal of Trace Elements in Medicine and Biology, 18(1): 47-51. https://doi.org/ 10.1016/j.jtemb.2004.02.003.
Depew, C. L., Bunting, L. D., Fernandez, J. M. and Tompson, D. L. (1998). Performance and metabolic response of young Dairy Calves Fed Diets supplemented with chromium Tripicolinate. Journal of Dairy Science. 8: 2916-2923. https://doi.org/10.3168/jds.S0022-0302(98)75853-9.
Faldyna, M., Pechova, A. and Krejci, J. (2003). Chromium supplementation enhances antibody response to vaccination with tetanus toxoid in cattle. Journal of Veterinary Medicine Series B, 50(7): 326-331.‏ https://doi.org/ 10.1046/j.1439-0450.2003.00680.x.
Habibi, Z., Karimi-Dehkordi, S., Kargar,S. and Sadeghi, M. (2019). Grain source and chromium supplementation: Effects on health, metabolic status, and glucose insulin kinetics in Holstein heifer calves.Journal of Dairy Science. 102. https://doi.org/10.3168/jds.2019-16619.
Haldar, S., Mondal, S., Samanta, S. and Ghosh, T. K. (2009). Effects of dietary chromium supplementation on glucose tolerance and primary antibody response against des petits ruminants in dwarf Bengal goats (Capra hircus). Journal of Animal Science. 3: 209-217. https://doi.org/10.1017/S1751731108003418
Hassan, F.A, Mahmoud, R. and El-Araby, I.E. (2017). Growth performance, serum biochemical, economic evaluation and IL6 gene expression in growing rabbits fed diets supplemented with zinc nanoparticles. Zagazig Veterinary Journal, 45(3): 238-249. https://doi.org/ 10.21608/zvjz.2017.7949.
Hill, E. K. and Li, J. (2017). Current and future prospects for nanotechnology in animal production. Journal of Animal Science and Biotechnology, 8(1): 1-13. https://doi.org/  10.1186/s40104-017-0157-5.
Ghorbani, A., Sadri, H., Alizadeh, A.R.and Bruckmaier, R.M. (2012).Performance and metabolic responses of Holstein calves to supplemental chromium in colostrum and milk. Journal of Dairy Science. 95: 5760- 5769.
Ghosh, S., Mehla, R.K., Sirohi, S.K. and Tomar, S.K. (2011). Performance of crossbred calves with dietary supplementation of garlic extract. Animal phisiology and Animal Nutrition, 95: 449-455. https://doi.org/10.1111/j.1439-0396.2010.01071.x.
Ishikawa, H. (1993). Calf diarrhea accompanied with decrease of serum tocopherol and Sn concentrations in Japanese Black Cattle of a breeding farm. The Tohoku Journal Veterinary Clinics 16: 13-17. https://doi.org/10.22034/as.2021.36647.1526.
Khan, M.A., Lee, H.J., Lee, W.S., Kim, H.S., Kim, S.B., Ki, K.S., Park, S.J., Ha, J.K., and Choi, Y.J. (2007). Starch source evaluation in calf starter: I. Feed consumption, body weight gain, structural growth, and blood metabolites in Holstein calves. Journal of Dairy Science. 90(11): 5259-5268. https://doi.org/10.3168/jds.2007-0338.
Kargar, S., Mousavi, S., Karimi-Dehkordi, M. and Ghaffari, M.H, (2018). Growth performance, feeding behavior, health status, and blood metabolites of environmentally heat-loaded Holstein dairy calves fed diets supplemented with chromium. Journal of Dairy Science, 101: 1-12. https://doi.org/ 10.3168/jds.2017-14154.
Kargar S, Mousavi F and Karimi-Dehkordi S (2018a). Effects of chromium supplementation on weight gain, feeding behaviour, health and metabolic criteria of environmentally heat-loaded Holstein dairy calves from birth to weaning. Archives of Animal Nutrition 72, https://doi.org/10.1080/1745039X.2018. 1510157.
Kegley E.B, Spears JW and Brown TT (1997) Effect of shipping and chromium supplementation on performance, immune response, and disease resistance of steers. J Anim Sci 75:1956–1964. https://doi.org/10.2527/1997.7571956x.
Kegley, E.B, and Spears, J. W. (1995). Immune response, glucose metabolism, and performance of stressed feeder calves fed inorganic or organic chromium. Journal of Animal Science. 73: 2721-2726. https://doi.org/ 10.2527/1995.7392721x.
Kafilzadeh, F. and Targhibi, M. R. (2012). Effect of chromium supplementation on productive and reproductive performances and some metabolic parameters in late gestation and early lactation of dairy cows. Biological trace element research. 149(1): 42-49. https://doi.org/10.1007/s12011-012-9390-0.
Kumar, M., Kaur, H., Deka, R. S., Mani, V., Tyagi, A. K. and Chandra, G. (2015). Dietary inorganic chromium in summer-exposed buffalo calves (Bubalus bubalis): effects on biomarkers of heat stress, immune status, and endocrine variables. Biological trace element research. 167: 18-27.‏ https://doi.org/ 10.1007/s12011-015-0272-0.
Kraidees, M.S., Al-Haidary, I.A., Mufarrej, S.I., Al-Saiady, M.Y., Metwally, H.M. and Hussein, M.F. (2009). Effect of supplemental chromium levels on performance, digestibility and carcass characteristics of transport-stressed lambs. Asian Australasian Journal of Animal Science. 22: 1124-1132. https://doi.org/10.5713/ajas.2009.80385 .
Kegley, E. and Spears, J. 1995. Immune response glucose metabolism and performance of stressed feeder calves fed inorganic or organic chromium. Journal of Animal Science. 73(9): 2721-2726. https://doi.org/10.2527/1995.7392721x https://doi.org/10.2527/1995.7392721x.
Kononoff, P., J. Heinrichs, and G. Varga. (2016). Using manure evaluation to enhance dairy cattle nutrition. Technical Bulletin of The Pennsylvania State University, College of Agriculture Science, Cooperative Extension: DAS 02-51. Department of Dairy and Animal Science, The Pennsylvania State University, University Park.
Marcondes, M.I. and Silva, A.L. (2021). Determination of energy and protein requirements of preweaned dairy calves: A multistudy approach. Journal of Dairy Science, 104(11): 11553-11566.‏ https://doi.org/10.3168/jds.2021-20272.
Marcondes, M.I. and Silva, A.L. (2021). Determination of energy and protein requirements of preweaned dairy calves: A multistudy approach. Journal of Dairy Science, 104(11): 11553-11566.‏ https://doi.org/10.3168/jds.2021-20272.
Mirzaei, M., Ghorbani, G., Khorvash,M., Rahmani, H. and Nikkhah, A. (2011).Chromium improves production and alters metabolism of early lactation cows in summer. Journal of Animal Physiology and Animal Nutrition. 95(1):81-89.
Moazeni zadeh, M. H., Towhidi, A., Zhandi, M. and Rezayazdi, K. (2023). Effects of supplementation of some trace minerals on growth performance, biochemical, enzymatic, antioxidant, hormonal and hematological parameters in Holstein suckling calves. Journal of Ruminant Research, 11(1), 75-92. https://doi.org/10.22069/ejrr.2022.20590.1863.
Moreira, P.S.A., Palhari, C. and Berber, R.C.A. (2020). Dietary chromium and growth performance animals: a review. Scientific Electronic Archives, 13(7): 59-66. https://doi.org/ 10.36560/13620201151.
Mousaie, A., Valizadeh, R., Naserian, A. A., Heidarpour, M. and Kazemi Mehrjerdi, H. (2014). Impacts of feeding selenium-methionine and chromiummethionine on performance, serum compo-nents, antioxidant status and physiological responses to transportation stress of Baluchi ewe lambs. Biological Trace Element Research. 162: 113–123. http://dx.doi.org/10.1007/s12011-014-0162-x
NRC. (2005). Mineral Tolerance of Animals. National Academies Press, Washington, DC. USA. 183 Pp.
Ohh, S. J., and Lee, J. Y. (2005). Dietary chromium-methionine chelate supplementation and animal performance. Asian-Australasian Journal of Animal Sciences, 18(6): 898-907. https://doi.org/ 10.5713/ajas.2005.898.
Phan, T.T.V., Huynh, T.C., Manivasagan, P., Mondal, S. and Oh, J. (2020). An up-to-date review on biomedical applications of palladium nanoparticles. Nanomaterials, 10(1): 66. https://doi.org/ 10.3390/nano10010066.
Puertollano, M.A., Puertollano, E., De Cienfuegos, G.A. and De Pablo, M.A. (2011). Dietary antioxidants: immunity and host defense. Current Topics in Medicinal Chemistry, 11: 1752–1766.  https://doi.org/ 10.2174/156802611796235107.
Qi, Z., Gao, J., Zhao, C., Zhang, Y., Liu, Y., Wang, X. and Li, H. (2018). PSXVII-30 Effects of dietary supplementation of yeast chromium and dihydropyridine on serum biochemical indices and HSP70 mRNA expression of lactating dairy cows in summer. Journal of Animal Science. 96(3): 448-449.‏ https://doi.org/10.1093/jas/sky404.979.
Pechova, A., and Pavlata, L. 2007.Chromium as an essential nutrient: a review. Veterinary Medicine, 52 (1):1-18. https://doi/10.17221/2010-VETMED.
Rahmani, M., Golian, A., Kermanshahi, H. and Bassami, M. R. (2017).  Efects of curcumin and nanocurcumin on growth performance, blood gas indices and ascites mortalities of broiler chickens reared under normal and cold stress conditions. Italian Journal of Animal Science. 16: 438–446. https://doi.org/10.1080/1828051X.2017.1290510.
Ryan, A.W., Kegley, E.B., Hawley, J., Powell, J.G., Hornsby, J.A., Reynolds, J. L. and Laudert, S.B. (2015). Supplemental trace minerals (zinc, copper, and manganese) as sulfates, organic amino acid complexes, or hydroxy trace-mineral sources for shipping-stressed calves. The Professional Animal Scientist, 31(4): 333-341.https://doi.org/10.15232/pas.2014-01383.
Sejian, V., Bhatta, R., Gaughan, J., Dunshea, F., & Lacetera, N. (2018). Adaptation of animals to heat stress. Animal, 12(s2), s431-s444. https://doi.org/10.1017/S1751731118001945.
Soltan, M. A. (2010). Effect of dietary chromium supplementation on productive and reproductive performance of early lactating dairy cows under heat stress. Journal of Animal Physiology and Animal Nutrition. 94: 264-272.https://doi.org/ 10.1111/j.1439-0396.2008.00913.x .
Spears, J. W. (2000). Micronutrients and immune function in cattle. Proceedings of the Nutrition Society. 59(4): 587-594.‏ https://doi.org/  10.1017/s0029665100000835.
Sordillo, L. M. and Aitken, S. L. (2009). Impact of oxidative stress on the health and immune function of dairy cattle. Vet Immunol Immunopathol, 128: 104–109. https://doi.org/10.1016/j.vetimm.2008.10.305.
Slanzon, G.S., Toledo, A.F., Silva, A.P., Coelho, M.G., da Silva, M.D., Cezar, A.M. and Bittar, C.M.M. (2019). Red propolis as an additive for preweaned dairy calves: Effect on growth performance, health, and selected blood parameters. Journal of Dairy Science, 102(10): 8952-8962. https://doi.org/10.3168/jds.2019-16646.
Terramoccia S, Bartocci S, Lillini E (2005) Milk yield and immune response of periparturient and early lactation friesian cows fed diets supplemented with a high level of amino-acid chelated chromium. Asian Austral J Anim 8:1098–1104. https://doi.org/10.5713/ajas.2005.1098
Uyanik, F. (2001). The effects of dietary chromium supplementation on some blood parameters in sheep. Journal of Biological Trace Element Research, 84: 93-101. https://doi.org/10.1385/BTER:84:1-3:093 .
Yari, M., Nikkhah, A., Alikhani, M.,Khorvash, M., Rahmani, H. and Ghorbani, G.(2010). Physiological calf responses to increased chromium supply in summer. Journal of Dairy Science. 93(9): 4111-4120. https://doi.org/10.3168/jds.2009-2568.
Yuan, K., Vargas-Rodriguez, C. F., Mamedova, L. K., Muckey, M. B., Vaughn, M. A., Burnett, D. D. and Bradford, B. J. (2014). Effects of supplemental chromium propionate and rumen-protected amino acids on nutrient metabolism, neutrophil activation, and adipocyte size in dairy cows during peak lactation. Journal of dairy science. 97(6): 3822-3831.‏ https://doi.org/ 10.3168/jds.2013-7770