نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری تغذیه طیور، گروه علوم دامی، دانشگاه ارومیه، ایران

2 استاد گروه علوم دامی، دانشگاه ارومیه، ایران

3 دانشیار گروه علوم دامی، دانشگاه ارومیه، ایران

4 استادیار گروه علوم دامی، دانشگاه آزاد خوراسگان، اصفهان، ایران

چکیده

مطالعه حاضر با هدف بررسی اثرات سطوح کاهشی عناصر کم‌نیاز آلی بر عملکرد تولیدی، صفات کیفی تخم‌مرغ، وضعیت تخمدان و صفات جوجه‌کشی در مرغ‌های مادر گوشتی مسن انجام شد. بدین منظور از تعداد 144 قطعه مرغ مادر گوشتی سویه راس 308 (80 هفته) در قالب طرح کاملاً تصادفی با 4 تیمار و 6 تکرار (6 مرغ و یک خروس در هر تکرار) به مدت 56 روز استفاده شد. تیمارهای آزمایشی شامل: 1) جیره حاوی شکل معدنی عناصر کم‌نیاز (25/0 درصد)، 2) جیره حاوی 1/0 درصد مکمل عناصر کم‌نیاز آلی، 3) جیره حاوی 15/0 درصد مکمل عناصر کم‌نیاز آلی و 4) جیره حاوی 2/0 درصد مکمل عناصر کم‌نیاز آلی بودند. استفاده از 15/0 و 20/0 درصد عناصر کم‌نیاز آلی در جیره مرغ‌های مادر گوشتی در مقایسه با 10/0 درصد عناصر کم‌نیاز آلی و 25/0 درصد عناصر کم‌نیاز غیرآلی باعث بهبود درصد تخم‌گذاری، وزن تخم‌مرغ، توده تخم‌مرغ، ضریب تبدیل خوراک، درصد جوجه‌درآوری استحکام پوسته و ضخامت پوسته تخم‌مرغ شد (05/0>P). درصد باروری تخم‌مرغ در مرغ‌های تغذیه‌شده با 20/0 درصد عناصر کم‌نیاز آلی به‌طور معنی‌داری بیشتر از تیمار شاهد بود (05/0>P). تعداد فولیکول‌های زرد بزرگ، وزن فولیکول‌های زرد بزرگ و وزن بزرگترین فولیکول آماده تخمک‌گذاری در مرغ‌های تغذیه‌شده با 15/0 و 20/0 درصد عناصر کم-نیاز آلی به‌طور معنی‌داری بیشتر از تیمار شاهد و 10/0 درصد عناصر کم‌نیاز آلی بود (05/0>P). به طور کلی، مشخص شد که سطوح 15/0 و 20/0 درصد عناصر کم‌نیاز آلی به عنوان سطوح بهینه باعث بهبود عملکرد تولیدی، کیفیت پوسته تخم‌مرغ، تعداد فولیکول‌های تخمدان و صفات جوجه‌کشی می‌شود.

کلیدواژه‌ها

موضوعات

Anchordoquy, J. P., Anchordoquy, J. M., Picco, S. J., Sirini, M. A., Errecalde, A. L. and Furnus, C. C. (2014). Influence of manganese on apoptosis and glutathione content of cumulus cells during in vitro maturation in bovine oocytes. Cell Biology International38(2), 246-253.
Aviagen. (2018).  Ross 308 parent stock: nutrition specifications. Accessed Apr. http://eu.aviagen.com/assets/Tech-Center/Ross_PS/Ross308-PS-NS-2016-EN.pdf.
Avila, L. P., Sweeney, K. M., Roux, M., Buresh, R. E., White, D. L., Kim, W. K. and Wilson, J. L. (2023). Evaluation of industry strategies to supply dietary chelated trace minerals (Zn, Mn, and Cu) and their impact on broiler breeder hen reproductive performance, egg quality, and early offspring performance. Journal of Applied Poultry Research32(3), 100354-368.
Bai, S. P., Lu, L., Luo, X. G. and Liu, B. (2008). Kinetics of manganese absorption in ligated small intestinal segments of broilers. Poultry Science87(12), 2596-2604.
Bai, S., Jin, G., Li, D., Ding, X., Wang, J., Zhang, K. and Zhao, J. (2017). Dietary organic trace minerals level influences eggshell quality and minerals retention in hens. Annals of Animal Science17(2), 503-515.
Behjatian Esfahani, M., Moravej, H., Ghaffarzadeh, M. and Nehzati Paghaleh, G. A. (2021). Comparison the Zn-threonine, Zn-methionine, and Zn oxide on performance, egg quality, Zn bioavailability, and Zn content in egg and excreta of laying hens. Biological Trace Element Research, 199(1), 292–304.
Cheng, R., Dhorajia, V. V., Kim, J. and Kim, Y. (2022). Mitochondrial iron metabolism and neurodegenerative diseases. Neurotoxicology88, 88-101.
Dong, Y., Zhang, K., Han, M., Miao, Z., Liu, C. and Li, J. (2022). Low level of dietary organic trace minerals improved egg quality and modulated the status of eggshell gland and intestinal microflora of laying hens during the late production stage. Frontiers in Veterinary Science9, 418-435.
Ebeid, T. A., Eid, Y. Z., El-Abd, E. A. and El-Habbak, M. M. (2008). Effects of catecholamines on ovary morphology, blood concentrations of estradiol-17β, progesterone, zinc, triglycerides and rate of ovulation in domestic hens. Theriogenology, 69(7), 870-876.
Emamverdi, M., Zare-Shahneh, A., Zhandi, M., Zaghari, M., Minai-Tehrani, D. and Khodaei-Motlagh, M. (2019). An improvement in productive and reproductive performance of aged broiler breeder hens by dietary supplementation of organic selenium. Theriogenology126, 279-285.
Fathi, M. M., El-Dlebshany, A. E., El-Deen, M. B., Radwan, L. M. and Rayan, G. N. (2016). Effect of long-term selection for egg production on eggshell quality of Japanese quail (Coturnix japonica). Poultry Science95(11), 2570-2575.
Favero, A., Vieira, S. L., Angel, C. R., Bos-Mikich, A., Lothhammer, N., Taschetto, D. and Ward, T. L. (2013). Development of bone in chick embryos from Cobb 500 breeder hens fed diets supplemented with zinc, manganese, and copper from inorganic and amino acid-complexed sources. Poultry Science92(2), 402-411.
Galaris, D., Barbouti, A. and Pantopoulos, K. (2019). Iron homeostasis and oxidative stress: An intimate relationship. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research1866(12), 535-549.
Garner, T. B., Hester, J. M., Carothers, A. and Diaz, F. J. (2021). Role of zinc in female reproduction. Biology of Reproduction104(5), 976-994.
Hamad, M., Bajbouj, K. and Taneera, J. (2020). The case for an estrogen-iron axis in health and disease. Experimental and Clinical Endocrinology & Diabetes128(04), 270-277.
Hernandez-Hernandez, A., Gomez-Morales, J., Rodriguez-Navarro, A. B., Gautron, J., Nys, Y. and García-Ruiz, J. M. (2008). Identification of some active proteins in the process of hen eggshell formation. Crystal Growth and Design8(12), 4330-4339.
Hostetler, C. E., Kincaid, R. L. and Mirando, M. A. (2003). The role of essential trace elements in embryonic and fetal development in livestock. The Veterinary Journal166(2), 125-139.
Hurley, W. L. and Doane, R. M. (1989). Recent developments in the roles of vitamins and minerals in reproduction. Journal of Dairy Science72(3), 784-804.
Kapper, C., Oppelt, P., Ganhör, C., Gyunesh, A. A., Arbeithuber, B., Stelzl, P. and Rezk-Füreder, M. (2024). Minerals and the Menstrual Cycle: Impacts on Ovulation and Endometrial Health. Nutrients16(7), 1008-1025.
Khalid, H., Hanif, M., Ali Hashmi, M., Mahmood, T., Ayub, K. and Monim-ul-Mehboob, M. (2013). Copper complexes of bioactive ligands with superoxide dismutase activity. Mini reviews in Medicinal Chemistry13(13), 1944-1956.
Kidd, M., Anthony, N. B., Johnson, Z. and Lee, S. (1992). Effect of zinc methionine supplementation on the performance of mature broiler breeders. Journal of Applied Poultry Research1(2), 207-211.
Leach Jr, R. M. and Gross, J. R. (1983). The effect of manganese deficiency upon the ultrastructure of the eggshell. Poultry Science62(3), 499-504.
Lebedev, S., Zavyalov, O. and Frolov, A. (2022). Age features and reference intervals for the concentrations of some essential and toxic elements in laying hens. Veterinary World15(4), 943-957.
Leeson, S., and Summers, J.D. (2005) in Commercial Poultry Nutrition Publ Univ Books, Guelph ON Canada.
Liu, X. F., Zhang, L. M., Zhang, Z., Liu, N., Xu, S. W. and Lin, H. J. (2013). Manganese-induced effects on testicular trace element levels and crucial hormonal parameters of Hyline cocks. Biological Trace Element Research151, 217-224.
Liu, Y. and Miao, J. (2022). An emerging role of defective copper metabolism in heart disease. Nutrients14(3), 700-714.
Londero, A., Rosa, A. P., Luiggi, F. G., Fernandes, M. O., Guterres, A., de Moura, S. and Santos, N. (2020). Effect of supplementation with organic and inorganic minerals on the performance, egg and sperm quality and, hatching characteristics of laying breeder hens. Animal Reproduction Science215, 309-323.
Lou, Y., Yang, T., Zhu, Y., Xia, C., Cui, H., Deng, H. and Guo, H. (2024). Effects of Trace Elements and Vitamins on the Synthesis of Steroid Hormones in Follicular Granulosa Cells of Yak. Veterinary Sciences11(12), 619-634.
Ma, Y., Shi, Y., Wu, Q. and Ma, W. (2021). Dietary arsenic supplementation induces oxidative stress by suppressing nuclear factor erythroid 2-related factor 2 in the livers and kidneys of laying hens. Poultry Science100(2), 982-992.
Manangi, M. K., Vazques-Anon, M., Richards, J. D., Carter, S. and Knight, C. D. (2015). The impact of feeding supplemental chelated trace minerals on shell quality, tibia breaking strength, and immune response in laying hens. Journal of Applied Poultry Research24(3), 316-326.
Maysa, M. H., El-Sheikh, A. M. H. and Abdalla, E. A. (2009). The effect of organic selenium supplementation on productive and physiological performance in a local strain of chicken. 1-the effect of organic selenium (Sel-PlexTM) on productive, reproductive and physiological traits of Bandarah local strain. Egyptian Poultry Science Journal, 29(4), 1061-1084.
Meng, T., Liu, Y. L., Xie, C. Y., Zhang, B., Huang, Y. Q., Zhang, Y. W. and Wu, X. (2019). Effects of different selenium sources on laying performance, egg selenium concentration, and antioxidant capacity in laying hens. Biological Trace Element Research189, 548-555.
Nasiadek, M., Stragierowicz, J., Klimczak, M. and Kilanowicz, A. (2020). The role of zinc in selected female reproductive system disorders. Nutrients12(8), 2464-79.
Nguyen, H. T. T., Morgan, N., Roberts, J. R., Wu, S. B., Swick, R. A. and Toghyani, M. (2021). Zinc hydroxychloride supplementation improves tibia bone development and intestinal health of broiler chickens. Poultry Science100(8), 101254-68.
Nikhil Kumar Tej, J., Johnson, P., Krishna, K., Kaushik, K., Gupta, P. S. P., Nandi, S. and Mondal, S. (2021). Copper and Selenium stimulates CYP19A1 expression in caprine ovarian granulosa cells: possible involvement of AKT and WNT signalling pathways. Molecular Biology Reports48, 3515-3527.
Nys, Y., Hincke, M. T., Arias, J. L., Garcia-Ruiz, J. M. and Solomon, S. E. (1999). Avian eggshell mineralization. Poultry and Avian Biology Reviews10(3), 143-166.
Olgun, O., Gül, E. T., Kılınç, G., Gökmen, F., Yıldız, A., Uygur, V. and Sarmiento-García, A. (2024). Comparative Effects of Including Inorganic, Organic, and Hydroxy Zinc Sources on Growth Development, Egg Quality, Mineral Excretion, and Bone Health of Laying Quails. Biological Trace Element Research, 12, 1-10.
Olukosi, O. A., van Kuijk, S. and Han, Y. (2018). Copper and zinc sources and levels of zinc inclusion influence growth performance, tissue trace mineral content, and carcass yield of broiler chickens. Poultry Science97(11), 3891-3898.
Olukosi, O. A., Van Kuijk, S. J. and Han, Y. (2019). Sulfate and hydroxychloride trace minerals in poultry diets–comparative effects on egg production and quality in laying hens, and growth performance and oxidative stress response in broilers. Poultry Science98(10), 4961-4971.
Park, S. Y., Birkhold, S. G., Kubena, L. F., Nisbet, D. J. and Ricke, S. C. (2004). Review on the role ofdietary zinc in poultry nutrition, immunity and reproduction. Biological Trace Element Research, 101(2), 147-163.
Pedro, D., Rosa, A. P., Londero, A., Forgiarini, J., Branco, T., Freitas, H. M. D. and Pilecco, M. (2021). Performance of broiler breeders supplemented with organic and inorganic minerals. Anais da Academia Brasileira de Ciências93(2), 48-64.
Petrucco, S. and Percudani, R. (2008). Structural recognition of DNA by poly (ADP‐ribose) polymerase‐like zinc finger families. The FEBS journal275(5), 883-893.
Powell, S. R. (2000). The antioxidant properties of zinc. The Journal of Nutrition130(5), 1447-1454.
Puig, S., Ramos-Alonso, L., Romero, A. M. and Martínez-Pastor, M. T. (2017). The elemental role of iron in DNA synthesis and repair. Metallomics9(11), 1483-1500.
Renema, R. A., Robinson, F. E., Melnychuk, V. L., Hardin, R. T., Bagley, L. G., Emmerson, D. A. and Blackman, J. R. (1995). The use of feed restriction for improving reproductive traits in male-line large white Turkey hens.: 2. Ovary morphology and laying traits. Poultry Science, 74(1), 102-120.
Robinson, F. E. and Etches, R. J. (1986). Ovarian steroidogenesis during foillicular maturation in the domestic fowl (Gallus Domesticus). Biology of Reproduction, 35(5), 1096-1105.
Saber, S., Kutlu, H. A. S. A. N., Uzun, Y., Celik, L. Ü. T. F. İ., Yucelt, O. and Baylan, M. (2020). Effects of form of dietary trace mineral premix on fertility and hatchability of broiler breeder hens and post-hatch performance and carcass parameters of their progenies. Kafkas Universitesi Veteriner Fakultesi Dergisi26, 171-180.
Saleh, A. A., Elsawee, M., Soliman, M. M., Elkon, R. Y., Alzawqari, M. H., Shukry, M. and Eltahan, H. (2021). Effect of Bacterial or Fungal Phytase Supplementation on the Performance, Egg Quality, Plasma Biochemical Parameters, and Reproductive Morphology of Laying Hens. Animals, 11(2), 540.
Solomon, S. E. (2010). The eggshell: strength, structure and function. British poultry science51(sup1), 52-59.
Song, Y. S., Annalora, A. J., Marcus, C. B., Jefcoate, C. R., Sorenson, C. M. and Sheibani, N. (2022). Cytochrome P450 1B1: A key regulator of ocular iron homeostasis and oxidative stress. Cells11(19), 2930-2946.
Soto-Heras, S. and Paramio, M. T. (2020). Impact of oxidative stress on oocyte competence for in vitro embryo production programs. Research in Veterinary Science132, 342-350.
Stefanello, C., Santos, T. C., Murakami, A. E., Martins, E. N. and Carneiro, T. C. (2014). Productive performance, eggshell quality, and eggshell ultrastructure of laying hens fed diets supplemented with organic trace minerals. Poultry Science93(1), 104-113.
Studer, J. M., Schweer, W. P., Gabler, N. K. and Ross, J. W. (2022). Functions of manganese in reproduction. Animal Reproduction Science238, 106924.
Sun, Q., Guo, Y., Ma, S., Yuan, J., An, S. and Li, J. (2012). Dietary mineral sources altered lipid and antioxidant profiles in broiler breeders and posthatch growth of their offsprings. Biological Trace Element Research145, 318-324.
Surai, P. F. and Fisinin, V. I. (2014). Selenium in poultry breeder nutrition: An update. Animal Feed Science and Technology191, 1-15.
Taschetto, D., Vieira, S. L., Angel, C. R., Stefanello, C., Kindlein, L., Ebbing, M. A. and Simões, C. T. (2017). Iron requirements of broiler breeder hens. Poultry Science96(11), 3920-3927.
Upadhaya, S. D. and Kim, I. H. (2020). Importance of micronutrients in bone health of monogastric animals and techniques to improve the bioavailability of micronutrient supplements—A review. Asian-Australasian Journal of Animal Sciences33(12), 1885–1895.
Villagómez‐Estrada, S., Pérez, J. F., van Kuijk, S., Melo‐Durán, D., Karimirad, R. and Solà‐Oriol, D. (2021). Effects of two zinc supplementation levels and two zinc and copper sources with different solubility characteristics on the growth performance, carcass characteristics and digestibility of growing‐finishing pigs. Journal of Animal Physiology and Animal Nutrition105(1), 59-71.
Visschedijk, A. H. J. (1968). The air space and embryonic respiration: 1. The pattern of gaseous exchange in the fertile egg during the closing stages of incubation. British Poultry Science9(2), 173-184.
Wessels, I., Maywald, M. and Rink, L. (2017). Zinc as a gatekeeper of immune function. Nutrients9(12), 1286-1297.
Xie, J., Tian, C., Zhu, Y., Zhang, L., Lu, L. and Luo, X. (2014). Effects of inorganic and organic manganese supplementation on gonadotropin-releasing hormone-I and follicle-stimulating hormone expression and reproductive performance of broiler breeder hens. Poultry Science93(4), 959-969.
Yang, S., Deng, H., Zhu, J., Shi, Y., Luo, J., Chen, T. and Xi, Q. (2024). Organic Trace Elements Improve the Eggshell Quality via Eggshell Formation Regulation during the Late Phase of the Laying Cycle. Animals14(11), 1637-1651.
Yaqoob, M. U., Wang, G., Sun, W., Pei, X., Liu, L., Tao, W. and Pelletier, W. (2020). Effects of inorganic trace minerals replaced by complexed glycinates on reproductive performance, blood profiles, and antioxidant status in broiler breeders. Poultry Science, 99(5), 2718-2726.
Yu, L., Yi, J., Chen, Y., Huang, M. and Zhu, N. (2021). Relative Bioavailability of Broiler Chickens Fed with Zinc Hydroxychloride and Sulfate Sources for Corn-Soybean Meal. Biological Trace Element Research, 1-12.