تأثیر سطوح اسیدآمینۀ ال-ترئونین بر ارزیابی پاسخ های ایمنی، فراسنجه های بیوشیمیایی سرم خون و مرفولوژی رودۀ باریک بلدرچین ژاپنی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته گروه پرورش و مدیریت طیور، دانشکده کشاورزی دانشگاه تربیت مدرس

2 استادیار گروه پرورش و مدیریت طیور، دانشکده کشاورزی، دانشگاه تربیت مدرس

3 استاد گروه پرورش و مدیریت طیور، دانشکده کشاورزی، دانشگاه تربیت مدرس

چکیده

آزمایش حاضر به منظور بررسی تاثیر سطوح اسید­آمینۀ ال-ترئونین در جیرۀ غذایی بر پایۀ گندم بر ارزیابی پاسخ­های ایمنی، فراسنجه­های بیوشیمیایی سرم خون، مرفولوژی رودۀ باریک و فراوانی میکروبی ایلئوم بلدرچین ژاپنی صورت گرفت. تعداد 144 قطعه بلدرچین یک­روزه به طور تصادفی بین 6 تیمار آزمایشی و 4 تکرار توزیع شدند. جیرۀ پایه بر اساس گندم، بدون افزودن ال-ترئونین و جیره‌ها‌ی آزمایشی با افزودن سطوح  6/0، 2/1، 8/1، 4/2 و 0/3 گرم در کیلوگرم ال-ترئونین تهیه شدند. میزان تیتر آنتی‌بادی در پاسخ به تزریق گلبول قرمز گوسفند روند خطی افزایشی و درجه دوم را با افزایش سطوح اسید­آمینۀ ترئونین دنبال کرد (01/0>P) اما اثر معنی‌­داری بر نتایج تیتر آنتی‌بادی نیوکاسل، افزایش ضخامت پوست در اثر چالش با دی‌نیتروکلروبنزن، تزریق فیتوهماگلوتینین و وزن نسبی اندام­های لنفاوی مشاهده نشد. سطوح ترئونین تأثیر معنی­داری بر اسید اوریک سرم نداشت، اما باعث افزایش معنی­داری در آلبومین، کلسترول، لیپوپروتئین­های با چگالی کم، سطح کلسیم (01/0>P) و پروتئین تام سرم (05/0>P) و کاهش مقدار تری­گلیسیرید (01/0>P) شد. افزایش سطوح ترئونین اثر معنی­داری بر افزایش طول و شاخص پرز و کاهش عمق کریپت در رودۀ باریک داشت (01/0>P). با افزایش سطوح ترئونین، روند خطی افزایشی و درجه دو در فراوانی باکتری­های اسید لاکتیک (01/0>P) و روند خطی کاهشی برای کلی‌باسیل­ها و هوازی ها مشاهده شد (01/0>P). به طور کلی در جیره‌های حاوی پلی‌ساکارید‌های غیرنشاسته‌ای سطح 4/2 گرم در کیلوگرم ال-ترئونین در بهبود ایمنی همورال و سطوح 4/2 و0/3 گرم در کیلوگرم ال-ترئونین در بهبود ویژگی­های مرفومتریک رودۀ باریک و فراوانی باکتری­های مفید ایلئوم می­تواند موثر واقع شود و بر بیوشیمی خون تأثیر مثبت بگذارد.

  1. 1-     احمدی چلچه، ع.، پوررضا، ج.، ولی، ن.، و خیری، ف. (1391) تأثیرسطوح متفاوت پروتئین و ترئونین بر عملکرد و برخی فراسنجه‌های خونی جوجه های گوشتی. پایان‌نامه‌ی کارشناسی ارشد. دانشگاه آزاد اسلامی واحد شهرکرد.

    2-     نظیفی، س. (1376) هماتولوژی و بیوشیمی بالینی پرندگان. انتشارات دانشگاه شیراز .

    3-      Bonos, E., Christaki, E., Abrahim, A., Soultos, N. and Florou-Paneri, P. (2011) Effect of dietary supplementation of mannan oligosaccharides on hydrogen ion concentration of the digestive tract and microbial populations of the ceca of Japanese quail (Coturnix coturnix japonica). Veterinary and Animal Sciences. 35(4): 263-269.

    4-      Chichlowski, M., Croom, W.J., McBride, B.W., Qiu, R., Chiang, C.C., Daniel, L.R., Havenstein, G.B. and Koci, M.D. (2007) Micro-architecture and spatial relationship between bacteria and ileal, cecal and colonic epithelium in chicks fed a direct-fed microbial and salinomycin. Poultry Science. 86: 1121-11.

    5-      Corrier, D.E. and DeLoach, J.R. (1990) Evaluationof cell-mediated, cutaneous basophil hypersensitivity in young chickens by an interdigital skin test. Poultry Science. 69(3): 403-408.

    6-      Corzo, A., Kidd, M.T., Dozier, W.A., Pharr, G.T. and Koutsos, E.A. (2007) Dietary threonine needs for growth and immunity of broilers raised under different litter conditions. The Journal of Applied Poultry Research. 16(4): 574-582.

    7-      Dommet, R., Zilbauer, M., George, J.T. and Bajaj-Elliott, M. (2005) Innate immune defence in the human gastrointestinal tract. Molecular and Cellular Immunology. 42: 903- 912.

    8-      Duncan, D.B. (1955). Multiple range and multiple F test. Biometrics 11: 42.

    9-      Gong, L.M., Lai, C.H., Qiao, S.Y., Li, D., Ma, Y.X. and Liu, Y.L. (2005) Growth performance, carcass characteristics, nutrient digestibility and serum biochemical parameters of broilers fed low-protein diets supplemented with various ratios of threonine to lysine. Asian Australasian Journal of Animal Sciences. 18(8): 1164.

    10-  Horn, N.L., Donkin, S.S., Applegate, T.J.,and Adeola, O. (2009) Intestinal mucin dynamics: Response of broiler chicks and white pekin ducklings to dietary threonine. Poultry Science. 88: 1906-1914.

    11-  Iji, P.A., Saki, A.A and Tivey. D.R. (2001). Intestinal structure and function of broiler chickens on diets supplemented with a mannan oligosaccharide. Science of Food and Agriculture. 81: 1192-1186.

    12-  Kidd, M.T., Barber, S.J., Virden, W.S., Dozier, W.A., Chamblee, D.W. and Wiernusz, C. (2003) Threonine responses of Cobb male finishing broilers in differing environmental conditions, The Journal of Applied Poultry Research, 12(2): 115-123.

    13-  Mandal, A.B., Sarabmeet, K., Anurag, K.J., Arumbackam, V.E., Chandra, D, and Harendra, P.S. (2006) Response of growing Japanese quails to dietary concentration of L-threonine. Journal of the Science of Food and Agriculture. 86: 793–798.

    14-  Mathlouthi, N., Mallet, S., Saulnier, L., Quemener, B and Larbier, M. )2002) Effectsof xylanase and b-glucanase addition on performance, nutrient digestibility, and physico-chemical conditions in the small intestine contents and caecal microflora of broiler chickens fed a wheat and barley-based diet. Animal Research. 51: 395–406.

    15-  Moghaddam, H.S., Moghaddam, H.N., Kermanshahi, H., Musavi, A.H. and  Raji, A. (2010). The effect of vitamin A on mucin2 gene expression, histological and performance of broiler chicken. Global Veterineria. 5(3): 168-174.

    16-  NRC (National Research Council). )1994) Nutrient requirements of poultry. National Academies Press.

    17-  Peterson, A.L., Qureshi, M.A., Ferket, P.R. and Fuller, J.C. (1999) Enhancement of cellular and humoral immunity in young broilers by the dietary supplementation of β-hydroxy-β-methylbutyrate. Immmunopharmacology and Immunotoxicology. 21(2): 307-330.

    18-  Plitzner, C. (2006) Dose response study on the threonine requirement in finishingpigs. Thesis of Universitatfur Bodenkultur. Wien.

    19-  SAS Institute. (2004) SAS User's Guide: Statistics version 7. SAS Institute. USA.

    20-  Schaart, M.W., Schierbeek, H., van der Schoor, S.R., Stoll, B., Burrin, D.G., Reeds, P.J. and van Goudoever, J.B. (2005) Threonine utilization is high in the intestine of piglets. Journal of Nutition. 135(4): 765-770

    21-  Tenenhouse, H.S. and Deutsch, H.F. (1966) Some physical-chemical properties of chicken γ-globulinsand their pepsin and papain digestion products. Immunochemistry. 3(1):11-20.

    22-  Yang, Y., Iji, P.A and Choct, M. (2009). Dietary modulation of gut microflora in broiler chickens: a review of the role of six kinds of alternatives to in-feed antibiotics. World's Poultry Science. 65: 97-114.

    23-  Zaefarian, F., Zaghari, M. and Shivazad, M. (2008) The threonine requirements and its effects on growth performance and gut morphology of broiler chicken fed different levels of protein. International Journal of Poultry Science. 7(12):1207-1215.

    24-  Zhu, X.Y., Zhong, T., Pandya, Y. and Joerger, R.D. (2002) 16s rRNA based-analysis of microbial from the cecum of broiler chickens. Applied and Enviromental Microbiology. 68: 124-137.


    e-he� _:1�0� �� reast-font-family:"Times New Roman"; mso-bidi-font-family:"Times New Roman";mso-bidi-language:AR-SA;mso-bidi-font-weight: normal'>31.  Paglia, D. E., and W. N. Valentine. (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. The journal of Labratory and Clinical Medicine. Vol, 70. No, 1. pp :158-169.

     

    1. Park, E. J., E. Bae, J. Yi, Y. Kim, K. Choi, and S. H. Lee. (2012) Repeated-dose toxicity and inflammatory responses in mice by oral administration of silver nanoparticles. Environmental Toxicology and Pharmacology. Vol, 30 No, 2. pp: 162-168.
    2. Pengpeng, L., R. Guan, X. Ye, J. Jiang, M. Liu, G. Huang, and X. Chen. (2007) Toxicity of nano- and micro-sized silver particles in human hepatocyte cell line L02. Journal of Physics. Vol, 304. No, 1. pp: 1- 9.
    3. Satoh, K. (1978) Serum lipid peroxide in cerebrovascular disorders determined by a new colorimetric method. Clinica Chimica Acta; International Journal of Clinical Chemistry. Vol, 90. No, 1. pp: 37-43.
    4. Sawosz, E., M. Grodzik, M. Zielinska, T. Niemiec, B. Olszanska, and A. Chwalibog. (2008) Nanoparticles of silver do not affect growth, development and DNA oxidative damage in chicken embryos. European Poultry Science. Vol, 73. No, 3. pp: 208-216.
    5. Siddique. Y. H., G. Ara, and M. Afzal. (2012) Estimation of lipid peroxidation induced by hydrogen peroxid in cultured human lymphocyte. Dose Response. Vol, 10. No, 1. pp: 1-12.
    6. Tang, J. L., L. Xiong, S. Wang, J. Wang, L. Liu, J. Li., et al. (2009) Distribution, Translocation and Accumulation of Silver Nanoparticles in Rats. Journal of Nanoscience and Nanotechnology. Vol, 9. No, 3. pp: 1–9.

    Tiwari, D. K., T. Jin, and j. Behari. (2011) Dose-dependent in-vivo toxicity assessment of silver nanoparticle in Wistar rats.