نوع مقاله : مقاله پژوهشی

نویسنده

دانشجوی دکتری ژنتیک و اصلاح نژاد دام، دانشکده کشاورزی، دانشگاه کردستان

چکیده

هدف از این مطالعه مقایسه چهار استراتژی‌های تلاقی در گله‌های شترمرغ با استفاده از شبیه‌سازی بود. صفات شبیه‌سازی شده شامل تولید تخم (EggsPro)، تولید جوجه (ChicksPro)، قابلیت هچ (Hatchability)، وزن زنده بدن در شروع تلاقی (LWB) و وزن زنده بدن در پایان تلاقی (LWE) بود. انتخاب نرها براساس ارزش اصلاحی صفت LWB و انتخاب ماده‌ها براساس ارزش اصلاحی صفت ChicksPro بود. استراتژی اول یک تلاقی بهینه بود، استراتژی دوم تلاقی افراد براساس حداکثر پیشرفت ژنتیکی بدون توجه به رشد همخونی، استراتژی سوم تلاقی افراد براساس حداقل رشد میزان همخونی بدون توجه به پیشرفت ژنتیکی و استراتژی چهارم تلاقی افراد به صورت تصادفی، بدون توجه به رشد همخونی و پیشرفت ژنتیکی بود. نتایج نشان داد اگر هدف در یک برنامه اصلاح‌نژادی پیشرفت سریع بدون وجود محدودیت در میزان رشد همخونی باشد استراتژی تلاقی با حداکثر پیشرفت ژنتیکی مطلوب است، در صورتی که امکانات تعیین نقشه این تلاقی وجود نداشته باشد، تلاقی تصادفی می‌تواند جایگزین گردد. در جمعیت‌های بسته با همخونی بالا و یا جمعیت‌هایی که باید به لحاظ ژنتیکی حفاظت شوند و در درجه دوم اهمیت پرورش دهنده به دنبال حداقل بهبود عملکرد در صفات مورد نظر نیز باشد، استراتژی تلاقی با حداقل همخونی، و در صورتی که هدف اصلاح‌نژاد بهبود مستمر، پایدار و قابل توجه در صفات اقتصادی باشد که لازمه آن جلوگیری از رشد زیاد در نرخ همخونی است، استراتژی تلاقی بهینه می‌تواند بهترین گزینه باشد.

کلیدواژه‌ها

فروتنی­فر، ص.، مهربانی یگانه، ح. و مرادی شهربابک، م. (1391). مقایسه صحت برآورد ارزش­های اصلاحی ژنومی و رایج با استفاده از تجزیه دو صفتی و تک صفتی. فصلنامه علوم دامی ایران. شماره 43، ص ص. 504-497.
میر،ف.، رکوعی،م.، داشاب، غ. ر. و فرجی آروق، ه. (1394). استفاده از شبیه سازی تصادفی برای تعیین برنامۀ به گزینی مناسب در گاو نژاد سیستانی. دو فصلنامه تولیدات دامی. شماره 17. ص ص. 170-161.
نصر، ج. (1390). راهنمای کامل پرورش شترمرغ (چاپ سوم). انتشارات نوربخش. ص 403.
Akdemir, D. and Sanchez, J.I. (2016). Efficient breeding by genomic mating. Frontiers in Genetics. 7:1-12.
Caballero, A. and Santiago, M. A. (1996). Systems of mating to reduce inbreeding in selection populations. Animal Science. 62:431-442.
Chen, G.K., Marjoram, P. and Wall, J.D. (2009). Fast and flexible simulation of DNA sequence data. Genome Res. 19: 136–142.
Cloete, S. W. P., Bunter, K.L. and Van Schalkwyk, S.J. (2002). Progress towards a scientific breeding strategy for ostriches. In: Proceedings of 7th World Congress on Genetics Applied to Livestock Production, Montpellier, France, p. 561.
Fair, D. M. (2012). The genetic and environmental modeling of production and reproduction in ostrich females within and across breeding seasons. Ph.D. Thesis. Faculty of Natural and Agricultural Sciences University of the Free State, South Africa.
Fairfull, R. W., McMillan, I. M. and Muir, W. M. (1998). Poultry breeding: Progress and prospects for genetic improvement of egg and meat production. In: Proceedings of 6th World Congress on Genetics Applied to Livestock Production, Armidale, New England, p. 271.
Gierdziewicz, M. (1993) Effect of herd size on estimating cattle breeding value. Animal Science Paper and Reports. 11(1): 5-11.
Gorjanc, G., Gaynor, R. C. and Hickey, J. M. (2018). Optimal cross selection for long-term genetic gain in two-part programs with rapid recurrent genomic selection. Theoretical and Applied Genetics. online Published: 1-14.
Haldane, J. (1919). The combination of linkage values and the calculation of distances between the loci of linked factors. Genetics. 8: 299-309.
Henryon, M., Sorensen, A. C. and Berg, P. (2009). Mating animals by minimizing the covariance between ancestral contributions generates less inbreeding without compromising genetic gain in breeding schemes with truncation selection. Animal. 3(10): 1339-1346.
Hudson, R. R. (2004). ms a program for generating samples under neutral models. Bioinformatics. 18: 337-338.
Kinghorn, B.P. and Shepherd, R.K. (1999). Mate selection for the tactical implementation of breeding programs. Assoc. Advmt. Anim. Breed. Genet. 13: 130-133.
Meuwissen, T.H.E. (1997). Maximizing the response of selection with a pre-defined rate of inbreeding. J. Anim. Sci., 75: 934-940.
Misztal, I., S. Tsuruta., D. Lourenco., I. Aguilar., A. Legarra. and Z. Vitezica. (2015). Manual for BLUPF90 family of program. Accessed Mar. 19, 2016.
Pong-Wong, R. and Woolliams, J.A. (2007). Optimisation of contribution of candidate parents to maximise genetic gain and restricting inbreeding using semidefinite programming. Genet. Sel. Evol. 39: 3–25.
Sonesson, A. K. and Meuwissen, T. H. E. (2000). Mating schemes for optimum contribution  selection with constrained rates of inbreeding. Genetic Selection Evolution. 32: 231-248.
Sonesson, A. K. and Meuwissen, T. H. E. (2002). Non-random mating for selection with restricted rates of inbreeding and overlapping generations. Genetic Selection Evolution. 34:23-39.
Sun, X., Peng, T. and Mumm, R. H. (2011). The role and basics of computer simulation in support of critical decisions in plant breeding. Mol. Breed. 28: 421–436.
Toro, M. and Perez-Enciso, M. (1990). Optimization of selection response under restricted inbreeding. Genet. Sel. Evol. 22: 93–107.