اثر کاهش نسبت اسیدهای چرب امگا-6 به امگا-3 بر متابولیت های خونی، کاهش التهاب و تعدیل مقاومت به انسولین در گاوهای شیری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ایران

2 دانشیار پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ایران.

3 دانشیار پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ایران

چکیده

هدف از این مطالعه بررسی اثر کاهش نسبت اسیدهای چرب امگا 6 به امگا 3 جیره طی دوره پس از زایش بر غلظت هاپتوگلوبین پلاسما، متابولیت‌های خونی و مقاومت به انسولین درگاوهای هلشتاین بود. تعداد 24 راس گاو چند شکم زا به‌طور تصادفی در سه تیمار با نسبت اسیدهای چرب امگا-6 به امگا-3: 5/2 به 1 (نسبت کم)، 5/4 به 1 (نسبت متوسط)، و 5/6 به 1 (نسبت زیاد) توزیع شدند. خونگیری در روز 7، 14، 28، 42، 56 و 70 پس از زایش به منظور تعیین غلظت متابولیت‌های خونی و هاپتوگلوبین انجام شد. تست تحمل گلوکز و چالش انسولین در روزهای 28 و 42 آزمایش انجام شد. غلظت پلاسمایی هاپتوگلوبین در گاوهای تغذیه ‌شده با نسبت زیاد امگا 6 به امگا 3 به‌طور معنی‌داری نسبت به دو تیمار دیگر بیشتر بود. تست چالش انسولین در روز 42 روز بعد زایش نشان‌داد که تغییر در نسبت اسیدهای چرب تیمار متوسط باعث افزایش نرخ زودگی و کاهش سطح زیر منحنی انسولین شد. نتایج این تحقیق گویای آن است که نسبت متوسط از اسیدهای چرب امگا-6 به امگا-3 در جیره گاوهای شیری باعث کاهش مقاومت به انسولین در اثر کاهش یکی از فاکتورهای التهابی می‌شود.

کلیدواژه‌ها


Ballou, M. (2012). Growth and development symposium: inflammation: role in the etiology and pathophysiology of clinical mastitis in dairy cows. Journal of animal science. 90:1466-1478.
Bauman, D.E. and Currie, W.B. (1980). Partitioning of nutrients during pregnancy and lactation: a review of mechanisms involving homeostasis and homeorhesis. J. Dairy Sci. 63:1514-1529.
Bell, A.W. (1995). Regulation of organic nutrient metabolism during transition from late pregnancy to early lactation. J. Anim. Sci. 73:2804-2819.
Bionaz, M., Trevisi, E., Calamari, L., Librandi, F., Ferrari, A. and Bertoni, G. (2007). Plasma paraoxonase, health, inflammatory conditions, and liver function in transition dairy cows. Journal of Dairy Science. 90:1740-1750.
Bradford, B., Yuan, K., Farney, J., Mamedova, L. and Carpenter, A. (2015). Invited review: Inflammation during the transition to lactation: New adventures with an old flame. Journal of dairy science. 98:6631-6650.
Bradford, B.J., Mamedova, L.K., Minton, J.E., Drouillard, J.S. and Johnson, B.J. (2009). Daily injection of tumor necrosis factor-α increases hepatic triglycerides and alters transcript abundance of metabolic genes in lactating dairy cattle. The Journal of nutrition. 139:1451-1456.
Caroprese, M., Albenzio, M., Marino, R., Santillo, A. and Sevi, A. (2013). Dietary glutamine enhances immune responses of dairy cows under high ambient temperature. Journal of dairy science. 96:3002-3011.
D’Alessandro, M.a.E., Chicco, A., Karabatas, L. and Lombardo, Y.B. (2000). Role of skeletal muscle on impaired insulin sensitivity in rats fed a sucrose-rich diet: effect of moderate levels of dietary fish oil. The Journal of nutritional biochemistry. 11:273-280.
Delarue, J., LeFoll, C., Corporeau, C. and Lucas, D. (2004). N-3 long chain polyunsaturated fatty acids: a nutritional tool to prevent insulin resistance associated to type 2 diabetes and obesity? Reprod. Nutr. Dev. 44:289-299.
Gingras, A.A., White, P.J., Chouinard, P.Y., Julien, P., Davis, T.A., Dombrowski, L. and et al. (2007). Long‐chain omega‐3 fatty acids regulate bovine whole‐body protein metabolism by promoting muscle insulin signalling to the Akt–mTOR–S6K1 pathway and insulin sensitivity. The Journal of physiology. 579:269-284.
Greco, L., Neto, J.N., Pedrico, A., Ferrazza, R., Lima, F., Bisinotto, R. and et al. (2015). Effects of altering the ratio of dietary n-6 to n-3 fatty acids on performance and inflammatory responses to a lipopolysaccharide challenge in lactating Holstein cows. Journal of dairy science. 98:602-617.
Griffin, M.D., Sanders, T.A., Davies, I.G., Morgan, L.M., Millward, D.J., Lewis, F. and et al. (2006). Effects of altering the ratio of dietary n− 6 to n− 3 fatty acids on insulin sensitivity, lipoprotein size, and postprandial lipemia in men and postmenopausal women aged 45–70 y: the OPTILIP Study. The American journal of clinical nutrition. 84:1290-1298.
Gustafson, B., Hammarstedt, A., Andersson, C.X. and Smith, U. (2007). Inflamed adipose tissue a culprit underlying the metabolic syndrome and atherosclerosis. Arteriosclerosis, thrombosis, and vascular biology. 27:2276-2283.
Huzzey, J., Nydam, D., Grant, R. and Overton, T. (2012). Association of biomarkers of stress, inflammation, and negative energy balance with milk yield and reproductive performance in Holstein dairy cows. J. Dairy Sci. 95:705.
Ingvartsen, K.L. and Boisclair, Y. (2001). Leptin and the regulation of food intake, energy homeostasis and immunity with special focus on periparturient ruminants. Domestic Animal Endocrinology. 21:215-250.
Kim, S.C., Adesogan, A.T., Badinga, L. and Staples, C.R. (2007). Effects of dietary n-6:n-3 fatty acid ratio on feed intake, digestibility, and fatty acid profiles of the ruminal contents, liver, and muscle of growing lambs. J Anim Sci. 85:706-716.
Komatsu, T., Itoh, F., Kushibiki, S. and Hodate, K. (2005). Changes in gene expression of glucose transporters in lactating and nonlactating cows. Journal of animal science. 83:557-564.
Kushibiki, S., Hodate, K., Shingu, H., Obara, Y., Touno, E., Shinoda, M. and et al. (2003). Metabolic and lactational responses during recombinant bovine tumor necrosis factor-α treatment in lactating cows. Journal of dairy science. 86:819-827.
Kushibiki, S., Hodate, K., Shingu, H., Ueda, Y., Mori, Y., Itoh, T. and et al. (2001a). Effects of long-term administration of recombinant bovine tumor necrosis factor-α on glucose metabolism and growth hormone secretion in steers. American journal of veterinary research. 62:794-798.
Kushibiki, S., Hodate, K., Shingu, H., Ueda, Y., Shinoda, M., Mori, Y. and et al. (2001b). Insulin resistance induced in dairy steers by tumor necrosis factor alpha is partially reversed by 2, 4–thiazolidinedione. Domestic Animal Endocrinology. 21:25-37.
Lee, J.Y., Zhao, L., Youn, H.S., Weatherill, A.R., Tapping, R., Feng, L. and et al. (2004). Saturated fatty acid activates but polyunsaturated fatty acid inhibits Toll-like receptor 2 dimerized with Toll-like receptor 6 or 1. Journal of Biological Chemistry. 279:16971-16979.
Lemor, A., Hosseini, A., Sauerwein, H. and Mielenz, M. (2009). Transition period-related changes in the abundance of the mRNAs of adiponectin and its receptors, of visfatin, and of fatty acid binding receptors in adipose tissue of high-yielding dairy cows. Domestic animal endocrinology. 37:37-44.
Lichtenstein, A.H. and Schwab, U.S. (2000). Relationship of dietary fat to glucose metabolism. Atherosclerosis. 150:227-243.
Lou, J., Rizkalla, S., Boillot, J. and Alamowitch, C. (1996). Dietary (n-3) polyunsaturated fatty acids improve adipocyte insulin action and glucose metabolism in insulin-resistance rats: relation to membrane fatty acids. J. Nutr. 126:1951-1958.
Masson, V.R., Lucas, A., Gueugneau, A.-M., Macaire, J.-P., Paul, J.-L., Grynberg, A. and et al. (2008). Long-chain (n-3) polyunsaturated fatty acids prevent metabolic and vascular disorders in fructose-fed rats. The Journal of nutrition. 138:1915-1922.
Mukesh, M., Bionaz, M., Graugnard, D., Drackley, J. and Loor, J. (2010). Adipose tissue depots of Holstein cows are immune responsive: inflammatory gene expression in vitro. Domestic animal endocrinology. 38:168-178.
Mustad, V.A., DeMichele, S., Huang, Y.-S., Mika, A., Lubbers, N., Berthiaume, N. and et al. (2006). Differential effects of n-3 polyunsaturated fatty acids on metabolic control and vascular reactivity in the type 2 diabetic ob/ob mouse. Metabolism-Clinical and Experimental. 55:1365-1374.
Oh, J., Harper, M., Giallongo, F., Bravo, D.M., Wall, E.H. and Hristov, A.N. (2017). Effects of rumen-protected Capsicum oleoresin on productivity and responses to a glucose tolerance test in lactating dairy cows. Journal of dairy science. 100:1888-1901.
Pires, J., Pescara, J., Brickner, A., del Rio, N.S., Cunha, A. and Grummer, R. (2008). Effects of abomasal infusion of linseed oil on responses to glucose and insulin in Holstein cows. Journal of dairy science. 91:1378-1390.
Saremi, B., Al-Dawood, A., Winand, S., Müller, U., Pappritz, J., Von Soosten, D. and et al. (2012). Bovine haptoglobin as an adipokine: serum concentrations and tissue expression in dairy cows receiving a conjugated linoleic acids supplement throughout lactation. Veterinary immunology and immunopathology. 146:201-211.
Storlien, L.H., Kraegen, E.W., Chisholm, D.J., Ford, G.L., Bruce, D.G. and Pascoe, W.S. (1987). Fish oil prevents insulin resistance induced by high-fat feeding in rats. Science. 237:885-888.
Storlien, L.H., Jenkins, A.B., Chisholm, D.J., Pascoe, W.S., Khouri, S. and Kraegen, E.W. (1991). Influence of dietary fat composition on development of insulin resistance in rats: relationship to muscle triglyceride and ω-3 fatty acids in muscle phospholipid. Diabetes. 40:280-289.
Tang, T., Zhang, J., Yin, J., Staszkiewicz, J., Gawronska-Kozak, B., Jung, D.Y. and et al. (2010). Uncoupling of inflammation and insulin resistance by NF-κB in transgenic mice through elevated energy expenditure. Journal of Biological Chemistry. 285:4637-4644.
Yuan, K., Farney, J.K., Mamedova, L.K., Sordillo, L.M. and Bradford, B.J. (2013). TNFα altered inflammatory responses, impaired health and productivity, but did not affect glucose or lipid metabolism in early-lactation dairy cows.
Zarrin, M., Grossen-Rosti, L., Bruckmaier, R.M. and Gross, J.J. (2017). Elevation of blood beta-hydroxybutyrate concentration affects glucose metabolism in dairy cows before and after parturition. Journal of dairy science. 100:2323-2333.