Bréque, C., Surai, P., & Brillard, J. P. (2003). Roles of antioxidants on prolonged storage of avian spermatozoa in vivo and in vitro. Molecular Reproduction and Development: Incorporating Gamete Research, 66(3), 314-323. Doi.org/10.1002/mrd.10347
Dikalova, A. E., Bikineyeva, A. T., Budzyn, K., Nazarewicz, R. R., McCann, L., Lewis, W., ... & Dikalov, S. I. (2010). Therapeutic targeting of mitochondrial superoxide in hypertension. Circulation research, 107(1), 106-116. Doi.org/10.1161/CIRCRESAHA.109.214601
Donoghue, A. M., & Wishart, G. J. (2000). Storage of poultry semen. Animal reproduction science, 62(1-3), 213-232. Doi.org/10.1016/S0378-4320(00)00160-3
Harrison, R. A. P. (1974). The detection of hexokinase, glucosephosphate isomerase and phosphoglucomutase activities in polyacrylamide gels after electrophoresis: a novel method using immobilized glucose 6-phosphate dehydrogenase. Analytical biochemistry, 61(2), 500-507. Doi.org/10.1016/0003-2697(74)90417-5
Lu, X., Zhang, Y., Bai, H., Liu, J., Li, J., & Wu, B. (2018). Mitochondria-targeted antioxidant MitoTEMPO improves the post-thaw sperm quality. Cryobiology, 80, 26-29. Doi.org/10.1016/j.cryobiol.2017.12.009
Masoudi, R., Asadzadeh, N., & Sharafi, M. (2020). The mitochondria-targeted antioxidant Mito-TEMPO conserves rooster’s cooled semen quality and fertility potential. Theriogenology, 156, 236-241. Doi.org/10.1016/j.theriogenology.2020.07.018
Masoudi, R., Asadzadeh, N., & Sharafi, M. (2021). Effects of freezing extender supplementation with mitochondria-targeted antioxidant Mito-TEMPO on frozen-thawed rooster semen quality and reproductive performance. Animal Reproduction Science, 225, 106671. Doi.org/10.1016/j.anireprosci.2020.106671
Murphy, M. P., & Smith, R. A. (2000). Drug delivery to mitochondria: the key to mitochondrial medicine. Advanced drug delivery reviews, 41(2), 235-250. Doi.org/10.1016/S0169-409X(99)00069-1
Naik, A. K., Tandan, S. K., Dudhgaonkar, S. P., Jadhav, S. H., Kataria, M., Prakash, V. R., & Kumar, D. (2006). Role of oxidative stress in pathophysiology of peripheral neuropathy and modulation by N-acetyl-L-cysteine in rats. European Journal of Pain, 10(7), 573-579. Doi.org/10.1016/j.ejpain.2005.08.006
Peña, F. J., Johannisson, A., Wallgren, M., & Martinez, H. R. (2004). Antioxidant supplementation of boar spermatozoa from different fractions of the ejaculate improves cryopreservation: changes in sperm membrane lipid architecture. Zygote, 12(2), 117-124. Doi.org/10.1017/S096719940400262X
Ranga, A., Kalla, N. R., & Kanwar, U. (1990). Effect of gossypol on the fertility of male rats. Acta Europaea Fertilitatis, 21(1), 7-15. PMID: 1706128
Samuni, A. M., & Barenholz, Y. (2003). Site–activity relationship of nitroxide radical’s antioxidative effect. Free Radical Biology and Medicine, 34(2), 177-185. Doi.org/10.1016/S0891-5849(02)01238-8
Sarsour, E. H., Kalen, A. L., & Goswami, P. C. (2014). Manganese superoxide dismutase regulates a redox cycle within the cell cycle. Antioxidants & redox signaling, 20(10), 1618-1627. Doi.org/10.1089/ars.2013.5303
Yang, S. G., Park, H. J., Kim, J. W., Jung, J. M., Kim, M. J., Jegal, H. G., ... & Koo, D. B. (2018). Mito-TEMPO improves development competence by reducing superoxide in preimplantation porcine embryos. Scientific Reports, 8(1), 10130. Doi.org/10.1038/s41598-018-28497-5
Yasui, K., & Baba, A. (2006). Therapeutic potential of superoxide dismutase (SOD) for resolution of inflammation. Inflammation Research, 55, 359-363. Doi.org/10.1007/s00011-006-5195-y
Zhandi, M., & Sharafi, M. (2015). Negative effect of combined cysteine and glutathione in soy lecithin-based extender on post-thawed ram spermatozoa. Cell and tissue banking, 16, 443-448. DOI.org/10.1007/s10561-014-9488-z
Zhang, X., Lu, X., Li, J., Xia, Q., Gao, J., & Wu, B. (2019). Mito-Tempo alleviates cryodamage by regulating intracellular oxidative metabolism in spermatozoa from asthenozoospermic patients. Cryobiology, 91, 18-22. Doi.org/10.1016/j.cryobiol.2019.11.005