میرقلنج، س. ع.، رحیمی، ش.، برزگر، م. و کمالی، م. ع. (۱۳۸۴). مقایسه منابع مختلف اسیدهای چرب امگا-۳ جهت غنی سازی تخم مرغ. مجله دانشکده دامپزشکی دانشگاه تهران، ۱(۶۰): ۹۱-۸۷.
Agustini, T. W., Suzery, M., Sutrisnanto, D. and Maruf, W. F. (2015). Comparative study of bioactive substances extracted from fresh and dried Spirulina. Procedia Environmental Sciences, 23(4): 282-289.
Akbarian, A., Michiels, J., Degroote, J., Majdeddin, M., Golian, A. and De Smet, S. (2016). Association between heat stress and oxidative stress in poultry; mitochondrial dysfunction and dietary interventions with phytochemicals. Journal of Animal Science and Biotechnology, 7(2): 1-14.
Akila, G., Rajakrishnan, V., Viswanathan, P., Rajashekaran, K. N. and Menon, V. P. (1998). Effects of curcumin on lipid profile and lipid peroxidation status in experimental hepatic fibrosis. Hepatology Research, 11(3): 147-157.
Anvar, A. A. and Nowruzi, B. (2021). Bioactive properties of spirulina: A review. Bioactive Materials, 4(1): 134-142.
Baucells, M. D., Crespo, N., Barroeta, A. C., Lopez-Ferrer, S. and Grashorn, A. M. (2000). Incorporation of different polyunsaturated fatty acids into eggs. Poultry Science, 79(1): 51-59.
Boler, D. D., Fernández-Dueñas, D. M., Kutzler, L. W., Zhao, J., Harrell, R. J., Campion, D. R. and Dilger, A. C. (2012). Effects of oxidized corn oil and a synthetic antioxidant blend on performance, oxidative status of tissues, and fresh meat quality in finishing barrows. Journal of Animal Science, 90(13): 5159-5169.
Cortinas, L., Galobart, J., Barroeta, A. C., Baucells, M. D. and Grashorn, M. A. (2003). Change in α‐tocopherol contents, lipid oxidation and fatty acid profile in eggs enriched with linolenic acid or very long‐chain ω3 polyunsaturated fatty acids after different processing methods. Journal of the Science of Food and Agriculture, 83(8): 820-829.
Deng, R. and Chow, T. J. (2010). Hypolipidemic, antioxidant, and antiinflammatory activities of microalgae Spirulina. Cardiovascular Therapeutics, 28(4): 33-45.
Dong, X. F., Liu, S. and Tong, J. M. (2018). Comparative effect of dietary soybean oil, fish oil, and coconut oil on performance, egg quality and some blood parameters in laying hens. Poultry Science, 97(7): 2460-2472.
Ebeid, T., Eid, Y., Saleh, A. and Abd El-Hamid, H. (2008). Ovarian follicular development, lipid peroxidation, antioxidative status and immune response in laying hens fed fish oil-supplemented diets to produce n-3-enriched eggs. Animal, 2(1): 84-91.
El-Moataaz, S., Ismael, H. and Aborhyem, S. (2019). Assessment of chemical composition of Spirulina platensis and its effect on fasting blood glucose and lipid profile in diabetic Rats. Journal of High Institute of Public Health, 49(3): 199-211.
Fernandes, R., Campos, J., Serra, M., Fidalgo, J., Almeida, H., Casas, A. and Barros, A. I. (2023). Exploring the benefits of phycocyanin: From Spirulina cultivation to its widespread applications. Pharmaceuticals, 16(4): 592-606.
Hall, J. A., Jha, S. and Cherian, G. (2007). Dietary n-3 fatty acids decrease the leukotriene B4 response ex vivo and the bovine serum albumin-induced footpad swelling index in New Hampshire hens. Canadian Journal of Animal Science, 87(3): 373-380.
Hamard, A., Mazurais, D., Boudry, G., Le Huërou-Luron, I., Sève, B., and Le Floc'h, N. (2010). A moderate threonine deficiency affects gene expression profile, paracellular permeability and glucose absorption capacity in the ileum of piglets. The Journal of Nutritional Biochemistry, 21(10): 914-921.
Kralik, G., Grčević, M., Hanžek, D., Margeta, P., Galović, O. and Kralik, Z. (2020). Feeding to produce n-3 fatty acid-enriched table eggs. The Journal of Poultry Science, 57(2): 138-147.
Kralik, G., Kralik, Z., Grčević, M., Galović, O., Hanžek, D. and Biazik, E. (2021). Fatty acid profile of eggs produced by laying hens fed diets containing different shares of fish oil. Poultry Science, 100(10): 101379.
Long, S. F., Kang, S., Wang, Q. Q., Xu, Y. T., Pan, L., Hu, J. X. and Piao, X. S. (2018). Dietary supplementation with DHA-rich microalgae improves performance, serum composition, carcass trait, antioxidant status, and fatty acid profile of broilers. Poultry Science, 97(6): 1881-1890.
Long, S., Liu, S., Wu, D., Mahfuz, S. and Piao, X. (2020). Effects of dietary fatty acids from different sources on growth performance, meat quality, muscle fatty acid deposition, and antioxidant capacity in broilers. Animals, 10(3): 508-521.
Mirzaie, S., Zirak-Khattab, F., Hosseini, S. A. and Donyaei-Darian, H. (2018). Effects of dietary Spirulina on antioxidant status, lipid profile, immune response and performance characteristics of broiler chickens reared under high ambient temperature. Asian-Australasian Journal of Animal Sciences, 31(4): 556-569.
Mousavi, A., Mahdavi, A. H., Riasi, A. and Soltani-Ghombavani, M. J. (2017). Synergetic effects of essential oils mixture improved egg quality traits, oxidative stability and liver health indices in laying hens fed fish oil. Animal Feed Science and Technology, 234, 162-172.
Panaite, T. D., Cornescu, G. M., Predescu, N. C., Cismileanu, A., Turcu, R. P., Saracila, M. and Soica, C. (2023). Microalgae (Chlorella vulgaris and Spirulina platensis) as a protein alternative and their effects on productive performances, blood parameters, protein digestibility, and nutritional value of laying hens’ egg. Applied Sciences, 13(18): 34-51.
Pitman, W. A., Osgood, D. P., Smith, D., Schaefer, E. J. and Ordovas, J. M. (1998). The effects of diet and lovastatin on regression of fatty streak lesions and on hepatic and intestinal mRNA levels for the LDL receptor and HMG CoA reductase in F1B hamsters. Atherosclerosis, 138(1): 43-52.
Rustan, A. C., Nossen, J. O., Christiansen, E. N. and Drevon, C. A. (1988). Eicosapentaenoic acid reduces hepatic synthesis and secretion of triacylglycerol by decreasing the activity of acyl-coenzyme A: 1, 2-diacylglycerol acyltransferase. Journal of Lipid Research, 29(11): 1417-1426.
Salahuddin, M., Abdel-Wareth, A. A., Stamps, K. G., Gray, C. D., Aviña, A. M., Fulzele, S. and Lohakare, J. (2024). Enhancing Laying Hens’ Performance, Egg Quality, Shelf Life during Storage, and Blood Biochemistry with Spirulina platensis Supplementation. Veterinary Sciences, 11(8): 383-394.
SAS, S. (2009). STAT User’s Guide, Version 9.2. SAS Inst. Inc., Cary, NC.
Schweitzer, G. G., Chen, Z., Gan, C., McCommis, K. S., Soufi, N., Chrast, R. and Finck, B. N. (2015). Liver-specific loss of lipin-1-mediated phosphatidic acid phosphatase activity does not mitigate intrahepatic TG accumulation in mice. Journal of Lipid Research, 56(4): 848-858.
Shahryari, M., Tabeidian, S. A., Shahraki, A. D. F., Tabatabaei, S. N., Toghyani, M., Forouzmand, M. and Habibian, M. (2021). Using soybean acid oil or its calcium salt as the energy source for broiler chickens: Effects on growth performance, carcass traits, intestinal morphology, nutrient digestibility, and immune responses. Animal Feed Science and Technology, 276(7): 114919-11435.
Spolaore, P., Joannis-Cassan, C., Duran, E. and Isambert, A. (2006). Commercial applications of microalgae. Journal of Bioscience and Bioengineering, 101(2): 87-96.
Surai, P. F. and Sparks, N. H. C. (2000). Tissue-specific fatty acid and α-tocopherol profiles in male chickens depending on dietary tuna oil and vitamin E provision. Poultry Science, 79(8): 1132-1142.
Swiatkiewicz, S., Arczewska-Wlosek, A., and Jozefiak, D. (2015). The relationship between dietary fat sources and immune response in poultry and pigs: An updated review. Livestock Science, 180, 237-246.
Viveros, A., Ortiz, L. T., Rodríguez, M. L., Rebolé, A., Alzueta, C., Arija, I. and Brenes, A. (2009). Interaction of dietary high-oleic-acid sunflower hulls and different fat sources in broiler chickens. Poultry Science, 88(1): 141-151.
Vui, N. V., Oanh, D. H., Quyen, N. T. K., Linh, N. T., Nang, K. and Phong, N. H. (2024). The impact of adding spirulina algae to drinking water on the productivity, egg quality, yolk lipid oxidation, and blood biochemistry of laying hens. Advances in Animal and Veterinary Sciences, 12(9): 1654-1663.
Wathes, D. C., Abayasekara, D. R. E. and Aitken, R. J. (2007). Polyunsaturated fatty acids in male and female reproduction. Biology of Reproduction, 77(2), 190-201.