نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار ژنتیک و اصلاح دام، پژوهشکده دام‌های خاص، دانشگاه زابل

2 دانشجوی کارشناسی ارشد اصلاح نژاد دام، گروه علوم دامی، دانشکده کشاورزی، دانشگاه زابل.

3 دانشیار ژنتیک و اصلاح دام، گروه علوم دامی، دانشکده کشاورزی، دانشگاه زابل

4 دانشیار اصلاح نژاد دام، گروه علوم دامی و بیوانفورماتیک، دانشکده کشاورزی، دانشگاه زابل

چکیده

وزن بدن یکی از صفات مهم اقتصادی در برنامه‌های اصلاح نژادی پرندگان گوشتی است. پارامترهای ژنتیکی هر جمعیت متأثر از شرایط محیطی مختلف می‌باشد. لذا لازمه هر فعالیت اصلاح نژادی در طیور برآورد این پارامترهاست. هدف این پژوهش برآورد مؤلفه‌های (کو)واریانس و فراسنجه‌های ژنتیکی صفات وزن بدن از هچ تا 45 روزگی جمعیت آمیخته بلدرچین ژاپنی با استفاده از 1794 رکورد وزن بدن حاصل از 70 پرنده نر و 72 پرنده ماده بود. برآورد فراسنجه‌های ژنتیکی و غیرژنتیکی با استفاده از مدل چندصفتی در برگیرنده اثرات ژنتیکی افزایشی، ژنتیکی غیر‌افزایشی و اثرات مادری و تکنیک نمونه‌گیری گیبس انجام شد. وراثت‌پذیری به دست آمده برای صفات وزن بدن در روز هچ، 5، 10، 15، 20، 25، 30، 35، 40 و 45 روزگی به ترتیب 16/0، 11/0، 12/0، 14/0، 15/0، 18/0، 20/0، 19/0، 17/0 و 17/0 بود. وراثت‌پذیری مادری، نسبت واریانس محیط دائمی مادری به واریانس فنوتیپی، نسبت واریانس غالبیت و اپیستازی به واریانس فنوتیپی به ترتیب در دامنه 32/0- 39/0، 23/0- 36/0، 04/0- 10/0 و 03/0 - 13/0 برآورد شدند. بیشترین مقدار همبستگی ژنتیکی بین وزن 35 و 30 روزگی (94/0) و کمترین مقدار آن بین وزن هچ و 5 روزگی (16/0) بود. نتایج نشان داد که اثرات مادری و ژنتیکی غیرافزایشی جهت برآورد دقیق‌تر پارامترهای ژنتیکی باید در مدل منظور شوند و همچنین، انتخاب بلدرچین‌ها برای وزن بدن 25 روزگی به دلیل همبستگی بالای آن با 45 روزگی و وراثت‌پذیری بالای آن می‌تواند باعث پیشرفت ژنتیکی خوب در وزن بدن 45 روزگی شود.

کلیدواژه‌ها

Akbas, Y., Takma, C. and Yaylak, E. (2004). Genetic parameters for quail body weights using a random regression model. South African Journal of Animal Science, 34: 104-109.
Barbieri, A., Ono, R.K., Cursino, L.L., Farah, M.M., Pires, M.P., Bertipaglia, T.S., Pires, A.V., Cavani, L., Carreño, L.O.D. and Fonseca, R. (2015). Genetic parameters for body weight in meat quail. Poultry Science, 94: 169-171.
Bijma, P., Muir, W.M. and Van Arendonk, J.A. (2007). Multilevel selection 1: quantitative genetics of inheritance and response to selection. Genetics, 175: 277-288.
Bonafé, C.M. Torres, R.A., Teixeira, R.B., Silva, F.G., Sousa, M.F., Leite, C.D.S., Silva, L.P. and Caetano, G.C. (2011b). Heterogeneity of residual variance in random regression models in the description of meat quail growth. Revista Brasileira de Zootecnia, 40: 2129-2134.
Bonafé, C.M., Torres, R.A., Sarmento, J.L. R., Silva, L.P., Ribeiro, J.C., Teixeira, R.B., Silva, F.G. and Sousa, M.F. (2011a). Random regression models for description of growth curve of meat quails. Revista Brasileira de Zootecnia, 40: 765- 771.
Clément, V., Bibé, B., Verrier, É., Elsen, J.M., Manfredi, E., Bouix, J. and Hanocq, É. (2001). Simulation analysis to test the influence of model adequacy and data structure on the estimation of genetic parameters for traits with direct and maternal effects. Genetics Selection Evolution, 33: 369-395
Daikwo, S., Dike, U. and Dim, N. (2014). Estimation of Genetic parameters of Weekly Bodyweight and Growth Rates of Japanese quail. Journal of Agriculture and Veterinary Science,7: 56-62.
Devi, K.S., Gupta, B.R., Prakash, M.G., Qudratullah, S. and Reddy, A.R. (2010). Genetic studies on growth and production traits in two strains of Japanese quails. Tamilnadu Journal of Veterinary and Animal Sciences, 6: 223-230.
Dickerson, G.E. (1992). Manual for evaluation of breeds and crosses of domestic animals. In: http://www.fao.org/docrep/011/t0691e/T0691E01.htm. Accessed: 5.1.2018.
Dionello, N., Correa, G., Silva, M., Corrêa, A. and Santos, G. (2008). Genetic trajectory estimates of meat type quail lines using random regression models. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 60: 454-460.
Hussain, J., Akram, M., Sahota, A.W., Javed, K., Ahmad, H.A., Mehmood, S., Jatoi, A.S. and Ahmad, S. (2014). Selection for higher three week body weight in Japanese Quail: 2. Estimation of Genetic Parameters. Journal of Animal and Plant Sciences, 24: 869-873.
Karaman, E., Firat, M. and Narinc, D. (2014). Single-trait bayesian analysis of some growth traits in japanese quail. Revista Brasileira de Ciência Avícola, 16: 51-56.
Li, Y., Van Der Werf, J.H. and Kinghorn, B.P. (2006). Optimization of a crossing system using mate selection. Genetics Selection Evolution, 38: 147- 165.
Lotfi, E., Zerehdaran, S. and Azari, M.A. (2012). Direct and maternal genetic effects of body weight traits in Japanese quail (Coturnix Coturnix Japonica). Archiv fur Geflugelkunde, 76: 150-154.
Manaa, E.A., El-Bayomi, K.M. and Sosa, G.A. (2015). Genetic evaluation for growth traits in Japanese quail. Benha Veterinary Medical Journal, 28: 8-16.
Mielenz, N. (2006). Estimation of additive and non-additive genetic variances of body weight, egg weight and egg production for quails (Coturnix Coturnix Japonica) with an animal model analysis. Archives Animal Breeding, 49(3): 300-307.
Minvielle, F. (2004). The future of Japanese quail for research and production. World's Poultry Science Journal, 60: 500-507.
Misztal, I., Tsuruta, S., Strabel, T., Auvray, B., Druet, T. and Lee, D.H. (2002). BLUPF90 and related programs. In: 7th World Congress on Genetics Applied to Livestock Production, Montpellier, France.
Moritsu, Y., Nestor, K., Noble, D., Anthony, N. and Bacon, W. (1997). Divergent selection for body weight and yolk precursor in Coturnix coturnix japonica. 12. Heterosis in reciprocal crosses between divergently selected lines. Poultry Science, 76: 437-444.
Narinç, D., Aksoy, T. and Kaplan, S. (2016). Effects of multi-trait selection on phenotypic and genetic changes in Japanese Quail (Coturnix Coturnix Japonica). The Journal of Poultry Science, 53: 103-110.
Narinc, D., Aksoy, T. and Karaman, E. (2010). Genetic parameters of growth curve parameters and weekly body weights in Japanese quail (Coturnix Coturnix Japonica). Journal of Animal and Veterinary Advances, 9: 501-507.
Narinc, D., Karaman, E., Aksoy, T. and Firat, M.Z. (2014). Genetic parameter estimates of growth curve and reproduction traits in Japanese quail. Poultry Science, 93: 24-30.
Nasiri Foomani, N., Zerehdaran, S., Ahani Azari, M. and Lotfi, E. (2014). Genetic parameters for feed efficiency and body weight traits in Japanese quail. British Poultry Science, 55: 298-304.
Nassar, M., Goraga, Z. and Brockmann, G. (2012). Quantitative trait loci segregating in crosses between New Hampshire and White Leghorn chicken lines: II. Muscle weight and carcass composition. Animal Genetics, 43: 739-745.
Özsoy, A.N. and Aktan, S. (2011). Comparison of genetic parameter and breeding value predictions for live weight gain of Japanese quails by using three different models. Trends in Animal and Veterinary Sciences, 2: 11-16.
Pourtorabi E, Farzin, N. And Seraj, A. (2017). Effects of Genetic and Non-genetic Factors on Body Weight and Carcass Related Traits in Two Strains of Japanese Quails Poultry Science Journal, 5: 17-24.
Prado-Gonzalez, E., Ramirez-Avila, L. and Segura-Correa, J. (2003). Genetic parameters for body weight of Creole chickens from southeastern Mexico using an animal model. Livestock Research for Rural Development, 15 (1): 1-7.
Resende, R.O., Martins, E.N., Georg, P.C., Paiva, E., Conti, A.C.M., Santos, A.I., Sakaguti, E.S. and Murakami, A.E. (2005). Variance components for body weight in Japanese quails (Coturnix Japonica). Revista Brasileira de Ciência Avícola, 7: 23-25.
Röhel, R., Krieter, J. and Preisinger, R. (2000). The importance of variance components estimation in breeding of farm animals-a review. Archives Animal Breeding, 43: 523-534.
Saatci, M., Ap Dewi, I. and Aksoy, A. (2003). Application of REML procedure to estimate the genetic parameters of weekly liveweights in one‐to‐one sire and dam pedigree recorded Japanese quail. Journal of Animal Breeding and Genetics, 120: 23-28.
Saatci, M., Omed, H. and Ap Dewi, I. (2006). Genetic parameters from univariate and bivariate analyses of egg and weight traits in Japanese quail. Poultry Science, 85: 185-190.
Sezer, M. (2007). Genetic parameters estimated for sexual maturity and weekly live weights of Japanese quail (Coturnix Coturnix Japonica). Asian Australasian Journal of Animal Sciences, 20(1): 19-24.
Sezer, M., Berberoglu, E. and Ulutas, Z. (2006). Genetic association between sexual maturity and weekly live-weights in laying-type Japanese quail. South African Journal of Animal Science, 36: 142-148.
Silva, L.P., Ribeiro, J.C., Crispim, A.C., Silva, F.G., Bonafé, C.M., Silva, F.F. and Torres, R.A. (2013). Genetic parameters of body weight and egg traits in meat-type quail. Livestock Science, 153: 27-32.
Vali, N., Edriss, M. and Rahmani, H. (2005). Genetic parameters of body and some carcass traits in two quail strains. International Journal of Poultry Science, 4: 296-300.
Varkoohi, S. and Kaviani, K. (2014). Genetic improvement for body weight of Japanese quail. Annual Research and Review in Biology, 4: 347-353.
Varkoohi, S., Pakdel, A., Moradi Shahr Babak, M., Nejati Javaremi, A., Kause, A. and Zaghari, M. (2011). Genetic parameters for feed utilization traits in Japanese quail. Poultry Science, 90: 42-47.
Wei, M. and Van der Werf, J. (1993). Animal model estimation of additive and dominance variances in egg production traits of poultry. Journal of Animal Science, 71: 57-65.
Wolak, M.E. (2012). nadiv: an R package to create relatedness matrices for estimating non‐additive genetic variances in animal models. Methods in Ecology and Evolution, 3: 792-796.