نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری ژنتیک و اصلاح نژاد دام دانشگاه فردوسی مشهد

2 استادیار گروه علوم دامی دانشگاه فردوسی مشهد

3 استادیار گروه علوم دامی پردیس کشاورزی و منابع طبیعی کرج، دانشگاه تهران

4 استاد گروه علوم دامی دانشگاه فردوسی مشهد

چکیده

هدف ازاین پژوهش، ارزیابی عملکردانتخاب ژنومی برای صفات تولیدشیر، درصدچربی و درصدپروتئین درگاو نژادنجدی درگله‏های ایستگاهی و اقماری با استفاده از مدل‏های آماری مختلف بود. ازارزش‏های اصلاحی سنتی بدست آمده ازیک مدل رگرسیون تصادفی با استفاده ازاطلاعات شجره‏ای و فنوتیپی هر صفت بین سال‏های 1369 تا 1395 به عنوان متغیر پاسخ استفاده شد. با استفاده ازطرح 10 بار تکرار جمعیت آموزش-آزمون وچهارمدل بهترین پیش‏بینی نااریب خطی ژنومی مقیاس شده بافراوانی آللی مشاهده شده (GBLUP) و فراوانی آللی 5/0 (G05BLUP)، بیز A و بیز B قابلیت پیش‏بینی‏ها، ارزیابی شدند. نتایج نشان داد، GBLUP عملکرد بهتری نسبت به G05BLUP برای تولیدشیر (411/0 در مقابل 385/0) داشت ولی عملکرد G05BLUP برای درصدچربی (257/0 درمقابل 302/0) و درصدپروتئین (363/0 درمقابل 388/0) بهتر بود. صحّت برآورد ارزش اصلاحی تولید شیر و درصد چربی با استفاده از بیز A و بیز B به ترتیب به 371/0 و 353/0 کاهش و 329/0 و 314/0 افزایش یافتند. برای درصد پروتئین روش‏های بیزی و GBLUPs صحّت مشابه داشتند. دربین تمام روش‏ها و صفات، بیزA برای پروتئین با 14/0 و G0BLUP برای تولید شیر با 71/0 به ترتیب کمترین و بیشترین اریب پیش‏بینی بصورت انحراف از یک را داشتند. صحّت پیش‏بینی‏ها با استفاده از گله‏های اقماری علاوه بر گله ایستگاهی بین 01/0 تا 09/0 بسته به روش وصفت افزایش یافت ولی اریب نیز ازقبل بیشتر بود. درنتیجه، صحّت پیش‏بینی ژنومی برای صفات تولید شیر در گاو نجدی متوسط، ولی با توجه به اندازه کوچک جمعیت مناسب هستند که کاربرد انتخاب ژنومی برای این نژاد را ممکن می‏سازد.

کلیدواژه‌ها

حسینی وردنجانی، س. م.، شریعتی، م. م.، و نعیمی پور، ح. (1396). تأثیر مقیاس ماتریس روابط خویشاوندی ژنگانی بر برآورد مؤلفه ‏های واریانس و درستی پیش‌بینی ارزش ‏های اصلاحی. مجله علوم دامی ایران، دوره 48، شماره 2، ص ص. 206-197.
نظری، م.، بیگی نصیری، م. ت.، و فیاضی، ج. (1386). ارزیابی قابلیت‏های ژنتیکی و فنوتیپی صفات تولید شیر، چربی و درصد چربی گاوهای شیری نجدی با استفاده از مدل حیوانی تک و دو صفتی. مجله دامپزشکی ایران، دوره سوم، شماره 4، ص ص. 79-73.
Aguilar, I., Misztal, I., Johnson, D., Legarra, A., Tsuruta, S. and Lawlor, T. (2010). Hot topic: A unified approach to utilize phenotypic, full pedigree, and genomic information for genetic evaluation of Holstein final score. Journal of Dairy Science, 93(2), 743-752.
Browning, B. L. and Browning, S. R. (2009). A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals. The American Journal of Human Genetics, 84(2), 210-223.
Calus, M. (2010). Genomic breeding value prediction: methods and procedures. Animal, 4(02), 157-164.
Clark, S. A., Hickey, J. M. and Van der Werf, J. H. (2011). Different models of genetic variation and their effect on genomic evaluation. Genetics Selection Evolution, 43(1), 18.
Coster, A., Bastiaansen, J. W., Calus, M. P., van Arendonk, J. A. and Bovenhuis, H. (2010). Sensitivity of methods for estimating breeding values using genetic markers to the number of QTL and distribution of QTL variance. Genetics Selection Evolution, 42(1), 9.
Daetwyler, H. D., Pong-Wong, R., Villanueva, B. and Woolliams, J. A. (2010). The impact of genetic architecture on genome-wide evaluation methods. Genetics, 185(3), 1021-1031.
de los Campos, G. Genome enabled prediction methods: Laboratory. University of Alabama at Birmingham, Birmingham, Alabama http://​ www-personal.​ une.​ edu.​ au/​~ jvanderw/​ GdlCHandouts.​ pdf.
Forni, S., Aguilar, I. and Misztal, I. (2011). Different genomic relationship matrices for single-step analysis using phenotypic, pedigree and genomic information. Genetics Selection Evolution, 43(1), 1.
Gianola, D., de los Campos, G., Hill, W. G., Manfredi, E. and Fernando, R. (2009). Additive genetic variability and the Bayesian alphabet. Genetics, 183(1), 347-363.
Guo, G., Zhao, F., Wang, Y., Zhang, Y., Du, L. and Su, G. (2014). Comparison of single-trait and multiple-trait genomic prediction models. BMC genetics, 15(1), 30.
Gao, H., Christensen, O. F., Madsen, P., Nielsen, U. S., Zhang, Y., Lund, M. S. and Su, G. (2012). Comparison on genomic predictions using three GBLUP methods and two single-step blending methods in the Nordic Holstein population. Genetics Selection Evolution, 44(1), 8.
Habier, D., Fernando, R. L., Kizilkaya, K. and Garrick, D. J. (2011). Extension of the Bayesian alphabet for genomic selection. BMC bioinformatics, 12(1), 1.
Hayes, B., and Goddard, M. E. (2001). The distribution of the effects of genes affecting quantitative traits in livestock. Genetics Selection Evolution, 33(3), 209-230.
Hayes, B. J., Bowman, P. J., Chamberlain, A. C., Verbyla, K. and Goddard, M. E. (2009). Accuracy of genomic breeding values in multi-breed dairy cattle populations. Genetics Selection Evolution, 41(1), 51.
Hayes, B. J., Bowman, P. J., Chamberlain, A. and Goddard, M. (2009). Invited review: Genomic selection in dairy cattle: Progress and challenges. Journal of dairy science, 92(2), 433-443.
Hoze, C., Fritz, S., Phocas, F., Boichard, D., Ducrocq, V. and Croiseau, P. (2014). Efficiency of multi-breed genomic selection for dairy cattle breeds with different sizes of reference population. Journal of dairy science, 97(6), 3918-3929.
Li, Z. and Sillanpää, M. J. (2012). Overview of LASSO-related penalized regression methods for quantitative trait mapping and genomic selection. Theoretical and Applied Genetics, 125(3), 419-435.
Lourenco, D., Misztal, I., Tsuruta, S., Aguilar, I., Ezra, E., Ron, M., Shirak, A. and Weller, J. (2014). Methods for genomic evaluation of a relatively small genotyped dairy population and effect of genotyped cow information in multiparity analyses. Journal of dairy science, 97(3), 1742-1752.
Lund, M. S., Su, G., Janss, L., Guldbrandtsen, B. and Brøndum, R. F. (2014). Genomic evaluation of cattle in a multi-breed context. Livestock Science, 166, 101-110.
Madsen, P., Sørensen, P., Su, G., Damgaard, L. H., Thomsen, H. and Labouriau, R. (2006). DMU-a package for analyzing multivariate mixed models. Paper presented at the 8th World Congress on Genetics Applied to Livestock Production.
Nejati-Javaremi, A., Smith, C. and Gibson, J. (1997). Effect of total allelic relationship on accuracy of evaluation and response to selection. Journal of animal science, 75(7), 1738-1745.
Pérez, P. and de Los Campos, G. (2014). Genome-wide regression & prediction with the BGLR statistical package. Genetics, 114.164442.
Price, A. L., Zaitlen, N. A., Reich, D. and Patterson, N. (2010). New approaches to population stratification in genome-wide association studies. Nature reviews genetics, 11(7), 459.
Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A., Bender, D. and Daly, M. J. (2007). PLINK: a tool set for whole-genome association and population-based linkage analyses. The American Journal of Human Genetics, 81(3), 559-575.
Schaeffer, L. (2006). Strategy for applying genome‐wide selection in dairy cattle. Journal of Animal Breeding and Genetics, 123(4), 218-223.
Su, G., Brøndum, R. F., Ma, P., Guldbrandtsen, B., Aamand, G. P. and Lund, M. S. (2012). Comparison of genomic predictions using medium-density (∼ 54,000) and high-density (∼ 777,000) single nucleotide polymorphism marker panels in Nordic Holstein and Red Dairy Cattle populations. Journal of dairy science, 95(8), 4657-4665.
Tiezzi, F. and Maltecca, C. (2015). Accounting for trait architecture in genomic predictions of US Holstein cattle using a weighted realized relationship matrix. Genetics Selection Evolution, 47(1), 24.
VanRaden, P. (2008). Efficient methods to compute genomic predictions. Journal of dairy science, 91(11), 4414-4423.
VanRaden, P., Van Tassell, C., Wiggans, G., Sonstegard, T., Schnabel, R., Taylor, J. and Schenkel, F. (2009). Invited review: Reliability of genomic predictions for North American Holstein bulls. Journal of dairy science, 92(1), 16-24.