نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه علوم دامی، دانشگاه محقق اردبیلی.

2 دانش آموخته مقطع کارشناسی ارشد تغذیه طیور، دانشکده علوم دامی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان.

3 دانش آموخته مقطع دکتری تغذیه طیور، دانشکده علوم دامی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان.

4 دانش‌آموخته مقطع دکتری تغذیه طیور، موسسه تحقیق و توسعه، دانشگاه آدلاید استرالیا.

چکیده

هدف از این مطالعه بررسی اثرات جیره های غنی شده با پروبیوتیک، پری بیوتیک و کنجاله سویای تخمیری بر عملکرد، مورفولوژی روده و جمعیت سالمونلا در جوجه های گوشتی مواجهه یافته با سالمونلا تیفی موریوم بود. تعداد 450 قطعه جوجه گوشتی سویه راس 308 در قالب طرح کاملاً تصادفی به 5 تیمار آزمایشی با 6 تکرار و هر تکرار با 15 جوجه اختصاص داده شد. تیمارهای آزمایشی شامل 1)جیره پایه (بر اساس ذرت و کنجاله سویا) و بدون مواجهه با سالمونلا (شاهد منفی)، 2) جیره پایه و مواجهه یافته با سالمونلا (شاهد مثبت)، 3) جیره پایه بعلاوه 02/0 درصد پروبیوتیک، 4) جیره پایه بعلاوه 2/0 درصد پری بیوتیک و 5) جیره حاوی کنجاله سویای تخمیری بودند. نتایج آزمایش نشان داد که در مقایسه با گروه شاهد مثبت، تغذیه جیره های حاوی پروبیوتیک، پری بیوتیک و کنجاله سویای تخمیری سبب بهبود چشمگیر فراسنجه های عملکرد جوجه های چالش یافته شد (05/0>P). در 7 و 14 روز پس از چالش، درصد آلودگی در تیمارهای پروبیوتیک، پری بیوتیک و کنجاله سویای تخمیری کمتر از تیمار شاهد مثبت، بود. ارتفاع پرز و نسبت ارتفاع پرز به عمق کریپت در دئودنوم و ژژنوم گروه شاهد مثبت کمتر از سایر گروه های چالش یافته بود (05/0>P). بنابراین، کنجاله سویای تخمیری به دلیل داشتن نقشی شبیه به پروبیوتیک ها و پری بیوتیک ها در کنترل آلودگی های سالمونلایی می تواند به عنوان یک منبع پروتئینی فرآسودمند در تغذیه جوجه های گوشتی مورد توجه قرار گیرد.

کلیدواژه‌ها

دانشیار، م.، احمد آلی، ا.، عنایتی، د. (1393). افزودنی­های خوراکی و محرک­های رشد در تغذیه طیور، انتشارات آموزش و ترویج کشاورزی. صفحه 44-105.
بیات­پور، م.، فرهومند، پ.، دانشیار، م. (1390). بررسی عملکرد و سیستم ایمنی هومورال (تیتر پادتن در مقابل واکسن گامبورو، غلظت سرولوپلاسمین و نسبت هتروفیل به لنفوسیت) جوجه ‌های گوشتی تغذیه شده با سطوح مختلف پروبیوتیک و روغن سویا. نشریه دامپزشکی. صفحه 67-75.
AOAC. (2005). Association of official analytical chemists. 2005. 21th ed. Gaithersburg, M. D.: AOAC International.
Amerah, A.M., Mathis, G. and Hofacre, C.L. (2012). Effect of xylanase and a blend of essential oils on performance and Salmonella colonization of broiler chickens challenged with Salmonella enterica. Poultry Science. 91: 943-947.
Ashayerizadeh, A., Dastar B., Shams Shargh M., Sadeghi Mahoonak, A. and Zerehdaran, S. (2017). Fermented rapeseed meal is effective in controlling Salmonella enterica serovar Typhimurium infection and improving growth performance in broiler chicks. Veterinary Microbiology. 201: 93-102.
Baurhoo, B., Phillip, L. and Ruiz-Feria. C.A. (2007). Effects of purified lignin and mannan oligosaccharides on intestinal integrity and microbial populations in the caeca and litter of broiler chickens. Poultry Science. 86: 1070-1078.
Bell, C. and Kyriakides, A. (2002). Salmonella: a practical approach to the organism and its control in foods, Blackwell Publishing Ltd., Oxford, GB.
Biloni, A., Quintana, C.F., Menconi, A., Kallapura, G., Latorre, J., Pixley, C. and Hargis, B.M. (2013). Evaluation of effects of EarlyBird associated with FloraMax-B11 on Salmonella Enteritidis, intestinal morphology, and performance of broiler chickens. Poultry science. 92: 2337-2346.
Cheng, G., Hao, H., Xie, S., Wang, X., Dai, M., Huang, L. and Yuan. Z. (2014). Antibiotic alternatives: the substitution of antibiotics in animal husbandry? Frontiers in Microbiology. 4: 137-156.
Chen, L., Madl, R.L. and Vadlani, P.V. (2013). Nutritional enhancement of soy meal via Aspergillus oryzae solid-state fermentation. Cereal Chemistry. 90: 529-534.
Chiang, G., Lu, W.Q., Piao, X.S., Hu, J.K. Gong, L.M. and Thacker, P.A. (2010) Effects of feeding solid-state fermented rapeseed meal on performance, nutrient digestibility, intestinal ecology and intestinal morphology of broiler chickens. Asian-Australasian Journal of Animal Sciences. 23: 263-271.
Daneshyar, M., Kermanshahi, H. and Golian, A. (2012). The effects of turmeric supplementation on antioxidant status, blood gas indices and mortality in broiler chickens with T3-induced ascites. British Poultry Science. 53: 379-385.
Ding, X.M., Li, D.D., Bai, S.P., Wang, J.P., Zeng, Q.F., Su, Z.W. and Zhang, K. Y. (2017). Effect of dietary xylooligosaccharides on intestinal characteristics, gut microbiota, cecal short-chain fatty acids, and plasma immune parameters of laying hens. Poultry Science. 97: 874-881.
Gao, Y.L., Wang, C.S., Zhu, Q.H. and Qian, G.Y. (2013). Optimization of solid-state fermentation with Lactobacillus brevis and Aspergillus oryzae for trypsin inhibitor degradation in soybean meal. Journal of Integrative Agriculture. 12: 869-876.
Feng, J., Liu, X., Xu, Z.R., Wang, Y.Z. and Liu, J.X. (2007). Effects of fermented soybean meal on digestive enzyme activities and intestinal morphology in broilers. Poultry Science. 86: 1149-1154.
Jazi, V., Boldaji, F., Dastar, B., Hashemi, S.R. and Ashayerizadeh, A. (2017). Effects of fermented cottonseed meal on the growth performance, gastrointestinal microflora population and small intestinal morphology in broiler chickens. British Poultry Science. 58: 402-408.
Jazi, V., Foroozandeh, A. D., Toghyani, M., Dastar, B., Rezaie Koochaksaraie, R. and Toghyani, M. (2018a). Effects of Pediococcus acidilactici, mannan-oligosaccharide, butyric acid and their combination on growth performance and intestinal health in young broiler chickens challenged with Salmonella Typhimurium. Poultry science. 97: 2034-2043.
Jazi, V., Ashayerizadeh, A., Toghyani, M., Shabani, A., Tellez, G. and Toghyani, M. (2018b). Fermented soybean meal exhibits probiotic properties when included in Japanese quail diet in replacement of soybean meal. Poultry Science. 97: 2113-2122.
Kook, M.C., Cho, S. C., Hong, Y.H. and Park, H. (2014). Bacillus subtilis fermentation for enhancement of feed nutritive value of soybean meal. Journal of Applied Biological Chemistry. 57: 183-188.
Malago, J.J., Koninkx, J.F.J.G., Ovelgonne, H.H., van Asten, F.J.A.M., Swennenhuis, J.F. and van Dijk, J.E. (2003). Expression levels of heat shock proteins in enterocyte-like Caco-2 cells after exposure to Salmonella enteritidis. Cell Stress Chaperones. 8: 194-203.
Naji, S., Al-Zamili, I. and Al-Gharawi, J. (2015). The effect of feed wetting and fermentation on the intestinal flora, humoral and cellular immunity of broiler chicks. International Journal of Advanced Research. 3: 87-94.
Niba, A.T., Beal, J.D., Kudi, A.C. and Brooks, P.H. (2009). Bacterial fermentation in the gastrointestinal tract of non–ruminants: influence of fermented feeds and fermentable carbohydrates. Tropical Animal Health and Production, 41: 1393–1407.
Pourabedin, M., Chen, Q., Yang, M. and Zhao, X. (2017). Mannan-and xylooligosaccharides modulate caecal microbiota and expression of inflammatory-related cytokines and reduce caecal Salmonella Enteritidis colonisation in young chickens. FEMS Microbiology Ecology. 93: 226-234.
Prado-Rebolledo, O.F., Delgado-Machuca, J.D.J., Macedo-Barragan, R.J., Garcia-Marquez, L.J., Barrera, M.J.E., Latorre, J.D., Hernandez-Velasco, X. and Tellez, G. (2017). Evaluation of a selected lactic acid bacteria-based probiotic on Salmonella enterica serovar Enteritidis colonization and intestinal permeability in broiler chickens. Avian Pathology. 46: 90-94.
Rajani, J., Dastar, B., Samadi, F., Karimi Torshizi, M.A., Abdulkhani, A. and Esfandyarpour, S. (2016). Effect of extracted galactoglucomannan oligosaccharides from pine wood (Pinus brutia) on Salmonella Typhimurium colonisation, growth performance and intestinal morphology in broiler chicks. British Poultry Science. 57: 682-692.
Salim, H.M., Kang, H.K., Akter, N., Kim, D.W., Kim, J.H., Kim, M.J., Na, J.C., Jong, H.B., Choi, H.C., Suh, O.S. Kim, W.K. (2013). Supplementation of direct-fed microbials as an alternative to antibiotic on growth performance, immune response, cecal microbial population, and ileal morphology of broiler chickens. Poultry Science. 92: 2084-2090.
SAS Institute, SAS User’s Guide. (2003) Version 9.1 edition. SAS Institute Inc, Cary, NC.
Shabani, A., Boldaji, F., Dastar, B., Ghoorchi, T., and Zerehdaran, S. (2018). Preparation of fish waste silage and its effect on the growth performance and meat quality of broiler chickens. Journal of the Science of Food and Agriculture. 98: 4097-4103.
Shao, Y., Guo, Y. and Wang, Z. (2013). β-1, 3/1, 6-Glucan alleviated intestinal mucosal barrier impairment of broiler chickens challenged with Salmonella enterica serovar Typhimurium. Poultry Science. 92: 1764-1773.
Smith, C., Van Megen, W. Twaalfhoven, L. and Hitchcock, C. (1980). The determination of trypsin inhibitor levels in foodstuffs. Journal of the Science of Food and Agriculture. 31: 341-350.
Sun, H., Yao, X., Wang, X., Wu, Y., Liu, Y., Tang, J. and Feng, J. (2014) Chemical composition and in vitro antioxidant property of peptides produced from cottonseed meal by solid-state fermentation. Cyta-Journal of Food. 13: 264-272.
Van der Aar, P.J., Molist, F. and Klis, J.D. (2017). Thecentral role of intestinal health on the effect of feed additiveson feed intake in swine and poultry. Animal Feed Science and Technology. 233: 64-75.
Van winsen, R.L., Urlings, B.A., Lipman, L.J., Snijders, J.M., Keuzenkamp, D., Verheijden, J.H. and van Knapen, F. (2001). Effect of fermented feed on the microbial population of the gastrointestinal tracts of pigs. Applied and Environmental Microbiology. 67: 3071-3076.
Wang, Y., Liu, X.T., Wang, H.L., Li, D.F., Piao, X.S. and Lu, W.Q. (2014). Optimization of processing conditions for solid-state fermented soybean meal and its effects on growth performance and nutrient digestibility of weanling pigs. Livestock Science. 170: 91-99.
Yuan, L., Chang, J., Yin, Q., Lu, M., Di, Y., Wang, P., Wang, Z., Wang, E. and Lu, F. (2017). Fermented soybean meal improves the growth performance, nutrient digestibility, and microbial flora in piglets. Animal Nutrition. 3: 19-24.
Zhang, L., Zhang, L., Zeng, X., Zhou, L., Cao, G. and Yang, C. (2016). Effects of dietary supplementation of probiotic, Clostridium butyricum, on growth performance, immune response, intestinal barrier function, and digestive enzyme activity in broiler chickens challenged with Escherichia coli K88. Journal of Animal Science and Biotechnology. 7: 3-12.