حسینی، س.ج.، کرمانشاهی، ح.، نصیری مقدم، ح.، نبی پور، ا.، و حسنآبادی، ا. (1394). تأثیر 1و25 دی هیدروکسی کوله کلسیفرول و عصاره هیدروالکلی پودرشده پنیرباد (Coagulans Withania) ﺑﺮ ﻋﻤﻠﮑﺮد و اﺳﺘﺤﮑﺎم اﺳﺘﺨﻮان درﺷﺖﻧﯽ ﺟﻮﺟﻪﻫﺎی ﻧﺮ ﮔﻮﺷﺘﯽ. پژوهشهای تولیدات دامی، سال ششم شماره یازده، ص 18-9.
پوررضا، ج. (1384). اصول علمی و عملی پرورش طیور. انتشارات جهاد دانشگاهی واحد اصفهان.
نظری، م.، سالاری، س.، و قربانی، م.ر. (1399). اثر مکمل روی و جایگزینی بتائین جیره با متیونین بر عملکرد و فراسنجه های خونی مرغان تخمگذار در شرایط استرس گرمایی. تحقیقات دامپزشکی و فرآورده های بیولوژیک. شماره 126 ص 70-61.
Abd El-Hack, M. E., Alagawany, M., Salah, A. S., Abdel-Latif, M. A., & Farghly, M. F. (2018). Effects of dietary supplementation of zinc oxide and zinc methionine on layer performance, egg quality, and blood serum indices. Biological trace element research, 184(2): 456-462.
Abedini, M., Shariatmadari, F., Karimi Torshizi, M. A., & Ahmadi, H. (2018). Effects of zinc oxide nanoparticles on the egg quality, immune response, zinc retention, and blood parameters of laying hens in the late phase of production.
Journal of animal physiology and animal nutrition, 102(3): 736-745.
https://doi.org/10.1111/jpn.12871
Cao, J., Henry, P. R., Guo, R., Holwerda, R. A., Toth, J. P., Littell, R. C., ... & Ammerman, C. B. (2000). Chemical characteristics and relative bioavailability of supplemental organic zinc sources for poultry and ruminants. Journal of animal science, 78(8), 2039-2054.
Croteau, M.N., Dybowska, A.D., Luoma, S.N., & Valsami-Jones, E. (2011). A novel approach reveals that zinc oxide nanoparticles are bioavailable and toxic after dietary exposures. Nanotoxicology, 5:79-90.
Cufadar, Y., Göçmen, R., Kanbur, G., & Yıldırım, B. (2020). Effects of dietary different levels of nano, organic and inorganic zinc sources on performance, eggshell quality, bone Mechanical parameters and mineral contents of the tibia, liver, serum and excreta in laying hens. Biological trace element research, 193(1): 241-251.
El-katcha, M. I., Mosaad, A., Soltan, Mahmoud, M., Arafa, karima, N., El-Sayed R. K. (2018). Impact of Dietary Replacement of Inorganic Zinc by Organic or Nano Sources on Productive Performance, Immune Response and Some Blood Biochemical Constituents of Laying Hen. Alexandria Journal of Veterinary Sciences, 59(1): 48-59.
Gregory, N.G., & Wilkins, L.J. (1989). Broken bones in domestic fowl: handling and processing damage in end-of-lay battery hens. Br Poult Sci. 30: 555–62.
Haase, H., Mocchegiani, E., & Rink, L. (2006). Correlation between zinc status and immune function in the elderly. Biogerontology, 7(5): 421-428.
Jialing, Q., Xintao, L., Lianxiang, M., Chuanchuan, H., Junna, H., Bing, L., Dongyou, Y., Gang, L., & Jiming, X. (2020). Low-dose of organic trace minerals reduced fecal mineral excretion without compromising performance of laying hens. Asian-Australasian Journal of Animal Sciences, 33(4): 588-596.
Li, L. L., Gong, Y. J., Zhan, H. Q., Zheng, Y. X., & Zou, X. T. (2019). Effects of dietary Zn-methionine supplementation on the laying performance, egg quality, antioxidant capacity, and serum parameters of laying hens. Poultry science, 98(2): 923-931.
Manangi, M. K., Vazques-Anon, M., Richards, J. D., Carter, S., & Knight, C. D. (2015). The impact of feeding supplemental chelated trace minerals on shell quality, tibia breaking strength, and immune response in laying hens. Journal of Applied Poultry Research, 24(3): 316-326.
Marie, P., Labas, V., Brionne, A., Harichaux, G., Hennequet-Antier, C., Nys. Y., et al. (2015). Quantitative proteomics and bioinformatic analysis provide new insight into protein function during avian eggshell biomineralization. J Proteomics. 113: 178–93.
Nitrayova, S., Windisch, W., Von Heimendahl, E., Müller, A., & Bartelt, J. (2012). Bioavailability of zinc from different sources in pigs. Journal of animal science, 90(suppl_4): 185-187.
Noor, R., Mittal, S., & Iqbal, J. (2002). Superoxide dismutase–applications and relevance to human diseases. Medical Science Monitor, 8(9): RA210-RA215.
Nys, Y. (1999). Nutritional factors affecting eggshell quality. czech journal of animal science. 14: 135-143.
Pizzolante, C.C., Saldanha, E.S.P.B., Lagana, C., Kakimoto, S.K., & Toghashi, C.K. (2009). Effect of calcium levels and limestone pareticle size on the egg quality of semi-heavy layers in their second produc-tion cycle. Braz J Poult Sci. 11: 79–86.
Reid, G. M., & Tervit, H. (1999). Sudden infant death syndrome: oxidative stress. Medical hypotheses, 52(6): 577-580.
Roland, DA. (1986). Egg shell quality III: calcium and phosphorus requirements of commercial Leghorns. Worlds Poult Sci J. 42:154–65.
Saunders-Blades, J.L., & Korver, D.R. (2015). Effect of hen age and maternal vitamin D source on performance, hatchability, bone mineral density, and progeny in vitro early innate immune function. Poult Sci. 94: 1233–46.
Saunders-Blades, J.L., MacIsaac, J.L., & Korver, D.R., & Anderson, D.M. (2009). The effect of calcium source and particle size on the production performance and bone quality of laying hens. Poult Sci. 88: 338–53.
Swiatkiewicz, S., & Koreleski, J. (2008). The effect of zinc and manganese source in the diet for laying hens on eggshell and bones quality.
Veterinarni Medicina, 53(10): 555-563.
Yang, H., Liu, C., Yang, D., Zhang, H., & Xia, Z. (2009). Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition. Journal of Applied Toxicology, 29: 69-78.
Yu, Q., Liu, H., Yang, K., Tang, X., Chen, S., Ajuwon, K. M., ... & Fang, R. (2020). Effect of the level and source of supplementary dietary zinc on egg production, quality, and zinc content and on serum antioxidant parameters and zinc concentration in laying hens. Poultry Science, 99(11): 6233-6238.
Zhan, H.Q., Li, L.L., Gong, Y.J., Zheng, Y.X., & Zou, X.T. (2018). Effects of dietary Zn-methionine supplementation on the laying performance, egg quality, antioxidant capacity, and serum parameters of laying hens. Poult. Sci. 98: 923–931.